1
|
Li X, Shen W, Li G, Song Y, Lu X, Wong NK, Yan Y. Alternaphenol B2, a new IDH1 inhibitor from the coral-derived fungus Parengyodontium album SCSIO SX7W11. Nat Prod Res 2024; 38:3917-3923. [PMID: 37850447 DOI: 10.1080/14786419.2023.2269462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
A new aromatic polyketide, alternaphenol B2 (1), and four known compounds (2-5) were isolated from the coral-derived fungus Parengyodontium album SCSIO SX7W11. Their structures were elucidated by high-resolution mass spectrometry, 1D and 2D NMR spectroscopy and comparison with reported literatures. Compounds 1 and 2 exhibited selective inhibitory activity against isocitrate dehydrogenase mutant R132H (IDH1m), with IC50 values of 41.9 and 27.7 μM, respectively. Our findings thus provide a fresh incentive for investigation on IDH1m inhibitors as lead compounds for cancer treatment.
Collapse
Affiliation(s)
- Xiaoyue Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, China
| | - Wenbin Shen
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering and Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Guochao Li
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering and Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, China
| | - Xinhua Lu
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering and Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yan Yan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Chen HW, Wu XY, Zhao ZY, Huang ZQ, Lei XS, Yang GX, Li J, Xiong J, Hu JF. Terricoxanthones A-E, unprecedented dihydropyran-containing dimeric xanthones from the endophytic fungus Neurospora terricola HDF-Br-2 associated with the vulnerable conifer Pseudotsuga gaussenii. PHYTOCHEMISTRY 2024; 219:113963. [PMID: 38171409 DOI: 10.1016/j.phytochem.2023.113963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 μg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 μg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 μg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.
Collapse
Affiliation(s)
- Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xi-Ying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Zi-Qi Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xin-Sheng Lei
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiyang Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, PR China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
3
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
4
|
Liu X, Li RQ, Zeng QX, Li YQ, Chen XA. A Novel Zn 2Cys 6 Transcription Factor, TopC, Positively Regulates Trichodin A and Asperpyridone A Biosynthesis in Tolypocladium ophioglossoides. Microorganisms 2023; 11:2578. [PMID: 37894236 PMCID: PMC10609478 DOI: 10.3390/microorganisms11102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Asperpyridone A represents an unusual class of pyridone alkaloids with demonstrated potential for hypoglycemic activity, primarily by promoting glucose consumption in HepG2 cells. Trichodin A, initially isolated from the marine fungus Trichoderma sp. strain MF106, exhibits notable antibiotic activities against Staphylococcus epidermidis. Despite their pharmacological significance, the regulatory mechanisms governing their biosynthesis have remained elusive. In this investigation, we initiated the activation of a latent gene cluster, denoted as "top", through the overexpression of the Zn2Cys6 transcription factor TopC in Tolypocladium ophioglossoides. The activation of the top cluster led to the biosynthesis of asperpyridone A, pyridoxatin, and trichodin A. Our study also elucidated that the regulator TopC exerts precise control over the biosynthesis of asperpyridone A and trichodin A through the detection of protein-nucleic acid interactions. Moreover, by complementing these findings with gene deletions involving topA and topH, we proposed a comprehensive biosynthesis pathway for asperpyridone A and trichodin A in T. ophioglossoides.
Collapse
Affiliation(s)
- Xiang Liu
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Rui-Qi Li
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qing-Xin Zeng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xin-Ai Chen
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
5
|
Yang C, Zhang L, Zhang W, Huang C, Zhu Y, Jiang X, Liu W, Zhao M, De BC, Zhang C. Biochemical and structural insights of multifunctional flavin-dependent monooxygenase FlsO1-catalyzed unexpected xanthone formation. Nat Commun 2022; 13:5386. [PMID: 36104338 PMCID: PMC9474520 DOI: 10.1038/s41467-022-33131-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Xanthone-containing natural products display diverse pharmacological properties. The biosynthetic mechanisms of the xanthone formation have not been well documented. Here we show that the flavoprotein monooxygenase FlsO1 in the biosynthesis of fluostatins not only functionally compensates for the monooxygenase FlsO2 in converting prejadomycin to dehydrorabelomycin, but also unexpectedly converts prejadomycin to xanthone-containing products by catalyzing three successive oxidations including hydroxylation, epoxidation and Baeyer-Villiger oxidation. We also provide biochemical evidence to support the physiological role of FlsO1 as the benzo[b]-fluorene C5-hydrolase by using nenestatin C as a substrate mimic. Finally, we resolve the crystal structure of FlsO1 in complex with the cofactor flavin adenine dinucleotide close to the “in” conformation to enable the construction of reactive substrate-docking models to understand the basis of a single enzyme-catalyzed multiple oxidations. This study highlights a mechanistic perspective for the enzymatic xanthone formation in actinomycetes and sets an example for the versatile functions of flavoproteins. The biosynthesis of xanthones has not been well documented. Here, the authors report that monooxygenase FlsO1 catalyzes three successive oxidations – hydroxylation, epoxidation and Baeyer–Villiger oxidation—to form the xanthone scaffold in actinomycetes.
Collapse
|
6
|
Gram-Level Production of Balanol through Regulatory Pathway and Medium Optimization in Herb Fungus Tolypocladium ophioglossoides. J Fungi (Basel) 2022; 8:jof8050510. [PMID: 35628765 PMCID: PMC9143294 DOI: 10.3390/jof8050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
As a potential protein kinase C inhibitor, the fungus metabolite balanol has become more attractive in recent decades. In our previous work, we revealed its biosynthetic pathway through overexpression of the cluster-situated regulator gene blnR in Chinese herb fungus Tolypocladium ophioglossoides. However, information on the regulation of blnR is still largely unknown. In this study, we further investigated the regulation of balanol biosynthesis by BlnR through the analysis of affinity binding using EMSA and RNA-seq analysis. The results showed that BlnR positively regulates balanol biosynthesis through binding to all promoters of bln gene members, including its own promoter. Microscopic observation revealed blnR overexpression also affected spore development and hypha growth. Furthermore, RNA-seq analysis suggested that BlnR can regulate other genes outside of the balanol biosynthetic gene cluster, including those involved in conidiospore development. Finally, balanol production was further improved to 2187.39 mg/L using the optimized medium through statistical optimization based on response surface methodology.
Collapse
|
7
|
Zhang L, Yue Q, Wang C, Xu Y, Molnár I. Secondary metabolites from hypocrealean entomopathogenic fungi: genomics as a tool to elucidate the encoded parvome. Nat Prod Rep 2021; 37:1164-1180. [PMID: 32211677 DOI: 10.1039/d0np00007h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 2014 up to the third quarter of 2019 Hypocrealean entomopathogenic fungi (HEF) produce a large variety of secondary metabolites (SMs) that are prominent virulence factors or mediate various interactions in the native niches of these organisms. Many of these SMs show insecticidal, immune system modulatory, antimicrobial, cytotoxic and other bioactivities of clinical or agricultural significance. Recent advances in whole genome sequencing technologies and bioinformatics have revealed many biosynthetic gene clusters (BGCs) potentially involved in SM production in HEF. Some of these BGCs are now well characterized, with the structures of the cognate product congeners elucidated, and the proposed biosynthetic functions of key enzymes validated. However, the vast majority of HEF BGCs are still not linked to SM products ("orphan" BGCs), including many clusters that are not expressed (silent) under routine laboratory conditions. Thus, investigations into the encoded parvome (the secondary metabolome predicted from the genome) of HEF allows the discovery of BGCs for known SMs; uncovers novel metabolites based on the BGCs; and catalogues the predicted SM biosynthetic potential of these fungi. Herein, we summarize new developments of the field, and survey the polyketide, nonribosomal peptide, terpenoid and hybrid SM BGCs encoded in the currently available 40 HEF genome sequences. Studying the encoded parvome of HEF will increase our understanding of the multifaceted roles that SMs play in biotic and abiotic interactions and will also reveal biologically active SMs that can be exploited for the discovery of human and veterinary drugs or crop protection agents.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Qun Yue
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| |
Collapse
|
8
|
Zhang H, Zhao H, Wen J, Zhang Z, Stavropoulos P, Li Y, Ai L, Zhang J. Discrimination of enantiomers of amides with two stereogenic centers enabled by chiral bisthiourea derivatives using 1H NMR spectroscopy. Org Biomol Chem 2021; 19:6697-6706. [PMID: 34296731 PMCID: PMC9420356 DOI: 10.1039/d1ob00742d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enantiomers of a few new amides containing two stereogenic centers have been derived from d- and l-α-amino acids as guests for chiral recognition by 1H NMR spectroscopy. A variety of chiral amides with two or more stereogenic centers often exist in the products of catalytic asymmetric synthesis, natural products or their total synthetic products, and chiral drugs. It would be a challenging and meaningful work to explore their chiral recognition. For this purpose, a class of novel chiral bisthiourea derivatives 1-9 has been synthesized from (1S,2S)-(+)-1,2-diaminocyclohexane, d-α-amino acids, and isothiocyanates as chiral solvating agents (CSAs). CSAs 1-9 proved to afford better chiral discriminating results towards most amides with two stereogenic centers, which have been rarely studied as chiral substrates by 1H NMR spectroscopy. In particular, CSAs 7, 8 and 9, featuring 3,5-bis(trifluoromethyl)benzene residues, exhibit outstanding chiral discriminating capabilities towards all amides, providing well-separated 1H NMR signals and sufficiently large nonequivalent chemical shifts. To test their practical application in the determination of enantiomeric excess, 1H NMR spectra of chiral amides (G16) with different optical purities were measured in the presence of CSAs 7 and 8, respectively. Their ee values (up to 90%) were accurately calculated by the integration of the NH proton of the CONHPh group of G16. To better understand the chiral discriminating behavior, Job plots of (±)-G16 with CSA 7 and (±)-G17 with CSA 8 and the association constants (Ka) of (S,R)-G16 and (R,S)-G16 with CSA 7 were evaluated, respectively. In order to further reveal any underlying intermolecular hydrogen bonding interactions, theoretical calculations of the enantiomers of (S,R)-G16 and (R,S)-G16 with CSA 7 were performed by means of the hybrid density functional theory (B3LYP) with the standard basis sets of 3-21G of the Gaussian 03 program, respectively.
Collapse
Affiliation(s)
- Hanchang Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Hongmei Zhao
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Jie Wen
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zhanbin Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Yanlin Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Lin Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Jiaxin Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
9
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
10
|
Chavan SP, Kalbhor DB, Gonnade RG. Divergent approach to the synthesis of (-)-balanol heterocycle and cis-3-hydroxypipecolic acid based on chiral 2-aminoalkanol equivalent. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Velasco‐Rubio Á, Varela JA, Saá C. Recent Advances in Transition‐Metal‐Catalyzed Oxidative Annulations to Benzazepines and Benzodiazepines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Álvaro Velasco‐Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jesús A. Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Carlos Saá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
12
|
An efficient genetic transformation system for Chinese medicine fungus Tolypocladium ophioglossoides. J Microbiol Methods 2020; 176:106032. [PMID: 32805368 DOI: 10.1016/j.mimet.2020.106032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Tolypocladium ophioglossoides is a rare and valuable fungus extensively used in Chinese medicine for relieving postmenopausal syndrome in women yet its bioactive molecules are unknown. To explore its molecular mechanisms, we have developed a reliable Agrobacterium-mediated transformation system using the selective marker: the chlorimuron ethyl-resistance gene sur. For this purpose, we firstly constructed a T-DNA binary vector system and then improved the transformation efficiency by optimizing conditional parameters including the Agrobacterium tumefaciens concentration, the conidia number of T. ophioglossoides, the co-culture time and the concentration of acetosyringone. Furthermore, we have knocked-out the ku70 gene,which is a key gene in non-homologous end joining (NHEJ) DNA repair pathway,and the effect of the length of the homologous arms (HA) on the genetic transformation efficacy was also examined, which increased by 60% when HA was about 3 kb in length. Our results suggest that the genetic transformation system is efficient and feasible for the truffle-parasite fungus T. ophioglossoides, which can further be used in large-scale experiments for characterization of genes of interest in future work.
Collapse
|
13
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as kadsuraol A from Kadsura longipedunculata.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|