1
|
Deshwal S, Gopalakrishnan DK, Purohit A, Karmakar T, Vaitla J. Diastereoselective cyclopropanation of α,β-unsaturated carbonyl compounds with vinyl sulfoxonium ylides. Org Biomol Chem 2024; 22:6294-6307. [PMID: 39045784 DOI: 10.1039/d4ob00677a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Herein, we report a three-component stereoselective cyclopropanation of vinyl sulfoxonium ylides with indane 1,3-dione and aldehydes under mild reaction conditions. In contrast to previous reports, the present work shows that electrophilic addition selectively takes place at the α-position of the vinyl sulfoxonium ylide. The interesting feature of this approach is that the multicomponent reaction selectively proceeds because of the difference in nucleophilic reactivity of vinyl sulfoxonium ylides and indane 1,3-dione with electrophilic partners, such as aldehydes and in situ generated arylidenes. Additionally, density functional theory (DFT) studies were conducted to investigate the difference in the reactivity of these reactants, as well as to unveil the mechanism of this three-component reaction. Furthermore, non-covalent interactions of selectivity-determining transition states explain the origin of the diastereoselectivity of cyclopropanation.
Collapse
Affiliation(s)
- Shalu Deshwal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | | | - Alok Purohit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Janakiram Vaitla
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Wang Y, Wang Y, Qu J, Yang T, Zhang Y, Yuan C, Guo H, Wang C. BF 3·OEt 2 Catalyzed Cascade [4 + 2] Benzannulation of Vinyloxiranes with Coumarins to Construct Benzocoumarin Derivatives. J Org Chem 2024; 89:9462-9472. [PMID: 38869450 DOI: 10.1021/acs.joc.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A BF3·OEt2-catalyzed cascade cyclization reaction of vinyloxirane with coumarin is described, affording the benzocoumarin derivatives with moderate to excellent yields (72-92%). The reaction demonstrates exceptional substrate tolerance and has been extensively explored for its potential in drug development, including scale-up experiments, functional group transformations, and screening of the products for anticancer activity. Moreover, the reaction mechanism has been rigorously validated through intermediate trapping and control experiments. Additionally, this reaction represents the uncommon nonmetal catalyzed intermolecular cyclization of vinyloxiranes.
Collapse
Affiliation(s)
- Yafei Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Yujia Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Jiaxin Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tongtong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Yining Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, PR China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China
| | - Chang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| |
Collapse
|
3
|
Alexander JR, Shchepetkina VI, Stankevich KS, Benedict RJ, Bernhard SP, Dreiling RJ, Cook MJ. Pd-Catalyzed Rearrangement of N-Alloc- N-allyl Ynamides via Auto-Tandem Catalysis: Evidence for Reversible C-N Activation and Pd(0)-Accelerated Ketenimine Aza-Claisen Rearrangement. Org Lett 2021; 23:559-564. [PMID: 33410700 DOI: 10.1021/acs.orglett.0c04078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An auto-tandem catalytic double allylic rearrangement of N-alloc-N-allyl ynamides was developed. This reaction proceeds through two separate and distinct catalytic cycles with both decarboxylative Pd-π-allyl and Pd(0)-promoted aza-Claisen rearrangements occurring. A detailed mechanistic study supported by computations highlights these two separate mechanisms. Previously unreported reversible C-N ionization and a Pd(0)-catalyzed [3,3]-sigmatropic rearrangement were discovered. This study provides new reaction pathways for both π-allyl and sigmatropic rearrangements.
Collapse
Affiliation(s)
- Juliana R Alexander
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Veronika I Shchepetkina
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Ksenia S Stankevich
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rory J Benedict
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel P Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Reagan J Dreiling
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Matthew J Cook
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
4
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
5
|
Song X, Xu L, Ni Q. Highly diastereoselective synthesis of 3-methylenetetrahydropyrans by palladium-catalyzed oxa-[4 + 2] cycloaddition of 2-alkenylbenzothiazoles. Org Biomol Chem 2020; 18:6617-6621. [PMID: 32820794 DOI: 10.1039/d0ob01434f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A highly diastereoselective synthesis of 3-methylenetetrahydropyrans via palladium-catalyzed oxa-[4 + 2] cycloaddition of 2-alkenylbenzothiazoles with allyl carbonates bearing a nucleophilic alcohol side chain is presented. This synthetic methodology tolerates a wide variety of 2-alkenylbenzothiazoles and afforded the desired 3-methylenetetrahydropyrans in good yields and excellent dr. In addition, further derivatizations resulted in new scaffolds, making them useful synthetic precursors.
Collapse
Affiliation(s)
- Xiaoxiao Song
- College of Chemistry and Materials Science, Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | | | | |
Collapse
|
6
|
Formal [5+2] Cycloaddition of Vinyloxiranes with Oxazol‐5‐(4
H
)‐ones: A Facile Approach for Construction of Seven‐Membered Lactones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Liu Z, Feng X, Xu J, Jiang X, Cai X. Construction of allylic amino acid derivatives through a catalytic asymmetric allylic alkylation of azlactones with vinyl cyclopropanes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Schroeder R, Grenning AJ. Accessing the decarboxylative allylation–divinylcyclopropane-cycloheptadiene rearrangement from the ketone/aldehyde substrate pool. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
|
10
|
Braun J, Ariëns MI, Matsuo BT, de Vries S, van Wordragen EDH, Ellenbroek BD, Vande Velde CML, Orru RVA, Ruijter E. Stereoselective Synthesis of Fused Vinylcyclopropanes by Intramolecular Tsuji-Trost Cascade Cyclization. Org Lett 2018; 20:6611-6615. [PMID: 30350659 PMCID: PMC6218879 DOI: 10.1021/acs.orglett.8b02232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A stereoselective
intramolecular Tsuji–Trost cascade cyclization
of (homo)allylic vicinal diacetates with a pendant β-ketoamide
or related carbon nucleophile to give γ-lactam-fused vinylcyclopropanes
is reported. In addition to two new rings, the products contain three
new C–C stereocenters (two of which are quaternary) with a
9:1 dr. Moreover, the reaction proceeds in >94% enantiospecificity
with optically enriched starting materials, using an inexpensive carbohydrate
as the source of chirality.
Collapse
Affiliation(s)
- John Braun
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Maxim I Ariëns
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Bianca T Matsuo
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Steven de Vries
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Ellen D H van Wordragen
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Brecht D Ellenbroek
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Christophe M L Vande Velde
- Faculty of Applied Engineering, Advanced Reactor Technology , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| | - Romano V A Orru
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS) , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands
| |
Collapse
|