1
|
Antoniou IM, Ioannou N, Panagiotou N, Georgiades SN. LED-induced Ru-photoredox Pd-catalyzed C-H arylation of (6-phenylpyridin-2-yl)pyrimidines and heteroaryl counterparts. RSC Adv 2024; 14:12179-12191. [PMID: 38628490 PMCID: PMC11019410 DOI: 10.1039/d4ra02173h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
N-heterocycles are essential building blocks and scaffolds in medicinal chemistry. A Pd-catalyzed, Ru-photoredox-mediated C-H arylation is applied herein, for converting a series of functionality-inclusive (6-phenylpyridin-2-yl)pyrimidines to single arylated derivatives, using phenyldiazonium tetrafluoroborate as aryl source. This green chemistry-compliant transformation is induced by LED light. The drug-like modular substrates are constructed via combination of Biginelli multi-component condensation and Suzuki C-C cross-coupling, in order to strategically install, adjacent to the Ph-ring intended to undergo C-H arylation, a (6-pyridin-2-yl)pyrimidine that plays the role of a chelating directing moiety for the C-H arylation catalyst. The scope has been demonstrated on a series of 26 substrates, comprising diverse Ph-ring substituents and substitution patterns, as well as with 13 different aryl donors. Substrates in which the Ph-ring (arylation acceptor) was replaced by an electron-rich heteroaryl counterpart (2-/3-thiophene or -benzofuran) have also been examined and found to undergo arylation regioselectively. End-product conformations afford interesting motifs for occupying 3D chemical space, as implied by single-crystal X-ray diffraction, which has allowed the elucidation of six structures of aryl derivatives and one of an unprecedented pyrimidine-pyridine-benzofuran carbopalladated complex, believed to be a C-H activation derivative.
Collapse
Affiliation(s)
- Ioakeim M Antoniou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Natalia Ioannou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Nikos Panagiotou
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| | - Savvas N Georgiades
- Department of Chemistry, University of Cyprus 1 Panepistimiou Avenue, Aglandjia 2109 Nicosia Cyprus
| |
Collapse
|
2
|
Sindhe H, Reddy MM, Rajkumar K, Kamble A, Singh A, Kumar A, Sharma S. Pyridine C(sp 2)-H bond functionalization under transition-metal and rare earth metal catalysis. Beilstein J Org Chem 2023; 19:820-863. [PMID: 37346497 PMCID: PMC10280098 DOI: 10.3762/bjoc.19.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Pyridine is a crucial heterocyclic scaffold that is widely found in organic chemistry, medicines, natural products, and functional materials. In spite of the discovery of several methods for the synthesis of functionalized pyridines or their integration into an organic molecule, new methodologies for the direct functionalization of pyridine scaffolds have been developed during the past two decades. In addition, transition-metal-catalyzed C-H functionalization and rare earth metal-catalyzed reactions have flourished over the past two decades in the development of functionalized organic molecules of concern. In this review, we discuss recent achievements in the transition-metal and rare earth metal-catalyzed C-H bond functionalization of pyridine and look into the mechanisms involved.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Malladi Mounika Reddy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Karthikeyan Rajkumar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Amardeep Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anand Kumar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research - Ahmedabad, Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
3
|
Suárez-Lustres A, Martínez-Yáñez N, Velasco-Rubio Á, Varela JA, Saá C. Palladium-Catalyzed [5 + 2] Rollover Annulation of 1-Benzylpyrazoles with Alkynes: A Direct Entry to Tricyclic 2-Benzazepines. Org Lett 2023; 25:794-799. [PMID: 36720009 PMCID: PMC9926515 DOI: 10.1021/acs.orglett.2c04300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The first Pd-catalyzed [5 + 2] rollover annulation of 1-benzylpyrazoles with alkynes to assemble 10H-benzo[e]pyrazolo[1,5-a]azepines (tricyclic 2-benzazepines) has been developed. The rollover annulation implies a twofold C-H activation of aryl and heteroaryl Csp2-H bonds (C-H/C-H) of 1-benzylpyrazoles (five-atom partners) and alkynes to give the [5 + 2] annulated compounds.
Collapse
|
4
|
Maidich L, Pilo MI, Rourke JP, Clarkson GJ, Canu P, Stoccoro S, Zucca A. Classical vs. Non-Classical Cyclometalated Pt(II) Complexes. Molecules 2022; 27:7249. [PMID: 36364075 PMCID: PMC9654721 DOI: 10.3390/molecules27217249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 09/10/2023] Open
Abstract
Rollover cyclometalated complexes constitute a family of derivatives which differ from classical cyclometalated species in certain aspects. Various potential application fields have been developed for both classes of compounds, which have both similarities and differences. In order to uncover the relationships and distinctions between these two families of compounds, four Pt(II) cyclometalated complexes derived from 2-phenylpyridine (ppy) and 2,2'-bipyridine (bpy), assumed as prototypical ligands, were compared. For this study, an electron rich isostructural and isoelectronic pair of compounds, [Pt(N^C)Me(PPh3)], and an electron-poorer compound, [Pt(N^C)Cl(PPh3)] were chosen (N^C = ppy or bpy). DFT calculations, cyclic voltammetry, and UV-Vis spectra also helped to shed light into these species. Due to the presence of the more electronegative nitrogen in place of a C-H group, the rollover bpy-H ligand becomes a slightly weaker donor than the classical ppy-H ligand, and hence, generates (slightly) more stable cyclometalated complexes, lower energy frontier molecular orbitals, and electron-poorer platinum centers. On the whole, it was revealed that classical and rollover complexes have overall structural similarity, which contrasts to their somewhat different chemical behavior.
Collapse
Affiliation(s)
- Luca Maidich
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Maria I. Pilo
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Jonathan P. Rourke
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Guy J. Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Patrizia Canu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sergio Stoccoro
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Antonio Zucca
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
5
|
Ahmad MS, Meguellati K. Recent Advances in Metal Catalyzed C−H Functionalization with a Wide Range of Directing Groups. ChemistrySelect 2022. [DOI: 10.1002/slct.202103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Kamel Meguellati
- School of Pharmacy Jinan University 855 Xingye Avenue East Guangzhou 511436 China
| |
Collapse
|
6
|
Nabavizadeh SM, Molaee H, Haddadi E, Niroomand Hosseini F, Hoseini SJ, Abu-Omar MM. Tetranuclear rollover cyclometalated organoplatinum-rhenium compounds; C-I oxidative addition and C-C reductive elimination using a rollover cycloplatinated dimer. Dalton Trans 2021; 50:15015-15026. [PMID: 34609403 DOI: 10.1039/d1dt02086b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel tetranuclear Pt(IV)-Re(VII) complex [Pt2Me4(OReO3)2(PMePh2)2(µ-bpy-2H)], 4, is synthesized through the reaction of silver perrhenate with a new rollover cycloplatinated(IV) complex [Pt2Me4I2(PMePh2)2(µ-bpy-2H)], 3. In complex 4, while 2,2'-bipyridine (bpy) acts as a linker between two Pt metal centers, oxygen acts as a mono-bridging atom between Pt and Re centers through an unsupported Pt(IV)-O-Re(VII) bridge. The precursor rollover cycloplatinated(IV) complex 3 is prepared by the MeI oxidative addition reaction of the rollover cycloplatinated(II) complex [Pt2Me2(PMePh2)2(µ-bpy-2H)], 2. Complex 2 shows a metal-to-ligand charge-transfer band in the visible region, which was used to investigate the kinetics and mechanism of its double MeI oxidative addition reaction. Based on the experimental findings, the classical SN2 mechanism was suggested for both steps and supported by computational studies. All complexes are fully characterized using multinuclear NMR spectroscopy and elemental analysis. Attempts to grow crystals of the rollover cycloplatinated(IV) dimer 3 yielded a new dimer rollover cyclometalated complex [Pt2I2(PMePh2)2(µ-bpy-2H)], 5, presumably from the C-C reductive elimination of ethane. The identity of complex 5 was confirmed by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Hajar Molaee
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Elahe Haddadi
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | | | - S Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Mahdi M Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
7
|
Hagui W, Periasamy K, Soulé J. Synthesis of 2,2’‐Bipyridines through Catalytic C−C Bond Formations from C−H Bonds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wided Hagui
- Univ Rennes CNRS UMR6226 F-3500 Rennes France
| | | | | |
Collapse
|
8
|
Chen M, Meng H, Yang F, Wang Y, Chen C, Zhu B. Rhodium(iii)-catalyzed switchable C-H acylmethylation and annulation of 2,2'-bipyridine derivatives with sulfoxonium ylides. Org Biomol Chem 2021; 19:4268-4271. [PMID: 33908981 DOI: 10.1039/d1ob00590a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel protocol for Rh(iii)-catalyzed switchable C-H acylmethylation and annulation of 2,2'-bipyridine derivatives with sulfoxonium ylides is reported. This protocol provides a facile approach to synthesize structurally diverse acylmethylated 2,2'-bipyridine derivatives and acyl pyrido[2,3-a]indolizines with a broad range of functional group tolerance.
Collapse
Affiliation(s)
- Mengjia Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Zucca A, Pilo MI. Rollover Cyclometalation as a Valuable Tool for Regioselective C-H Bond Activation and Functionalization. Molecules 2021; 26:E328. [PMID: 33435257 PMCID: PMC7827749 DOI: 10.3390/molecules26020328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 01/31/2023] Open
Abstract
Rollover cyclometalation constitutes a particular case of cyclometallation reaction. This reaction occurs when a chelated heterocyclic ligand loses its bidentate coordination mode and undergoes an internal rotation, after which a remote C-H bond is regioselectively activated, affording an uncommon cyclometalated complex, called "rollover cyclometalated complex". The key of the process is the internal rotation of the ligand, which occurs before the C-H bond activation and releases from coordination a donor atom. The new "rollover" ligand has peculiar properties, being a ligand with multiple personalities, no more a spectator in the reactivity of the complex. The main reason of this peculiarity is the presence of an uncoordinated donor atom (the one initially involved in the chelation), able to promote a series of reactions not available for classic cyclometalated complexes. The rollover reaction is highly regioselective, because the activated C-H bond is usually in a symmetric position with respect to the donor atom which detaches from the metal stating the rollover process. Due to this novel behavior, a series of potential applications have appeared in the literature, in fields such as catalysis, organic synthesis, and advanced materials.
Collapse
Affiliation(s)
- Antonio Zucca
- Department of Chemistry and Pharmacy, University of Sassari, via Vienna 2, 07100 Sassari, Italy;
| | | |
Collapse
|
10
|
Meng H, Yang F, Chen M, Chen C, Zhu B. Rh(iii)-Catalyzed switchable C–H monoalkenylation and dialkenylation of 2-(1H-pyrazol-1-yl)pyridine with alkenes via rollover cyclometalation. Org Chem Front 2021. [DOI: 10.1039/d0qo01325k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have demonstrated Rh(iii)-catalyzed switchable C–H monoalkenylation and dialkenylation of 2-(1H-pyrazol-1-yl)pyridine with alkenes via rollover cyclometalation.
Collapse
Affiliation(s)
- Haifang Meng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Fang Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Mengjia Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
11
|
Wu S, Wang Z, Bao Y, Chen C, Liu K, Zhu B. A novel approach for rhodium(iii)-catalyzed C-H functionalization of 2,2'-bipyridine derivatives with alkynes: a significant substituent effect. Chem Commun (Camb) 2020; 56:4408-4411. [PMID: 32195504 DOI: 10.1039/d0cc01077d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We described a novel approach for the C-H functionalization of 2,2'-bipyridine derivatives with alkynes. DFT calculations and experimental data showed a significant substituent effect at the 6-position of 2,2'-bipyridine, which weakened the adjacent N-Rh bond and provided the possibility of subsequent rollover cyclometalation, C-H activation, and functionalization.
Collapse
Affiliation(s)
- Shaonan Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 606] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
13
|
Zhou J, Mao Z, Pan H, Zhang X. Pd-Catalyzed highly selective and direct ortho C–H arylation of pyrrolo[2,3-d]pyrimidine derivatives. Org Chem Front 2020. [DOI: 10.1039/c9qo01312a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pd-Catalyzed one-pot direct ortho C–H arylation of pyrrolo[2,3-d]pyrimidine derivatives is reported. This protocol provides a variety of biphenyl-containing pyrrolo[2,3-d]pyrimidines in good to excellent yields.
Collapse
Affiliation(s)
- Jing Zhou
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Zhengtong Mao
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Haokun Pan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
14
|
Wu S, Wang Z, Ma D, Chen C, Zhu B. Rh(iii)-Catalyzed switchable C–H functionalization of 2-(1H-pyrazol-1-yl)pyridine with internal alkynes. Org Chem Front 2020. [DOI: 10.1039/d0qo00248h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We reported a Rh(iii)-catalyzed switchable C–H functionalization of 2-(1H-pyrazol-1-yl)pyridine with internal alkynes, which provided diversiform functionalized N,N-bidentate chelating compounds.
Collapse
Affiliation(s)
- Shaonan Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Zhuo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Dianxue Ma
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
15
|
Wen S, Chen Y, Zhao Z, Ba D, Lv W, Cheng G. Ruthenium(II)-Catalyzed Construction of Isocoumarins via Dual C–H/C–C Activation of Sulfoxonium Ylides. J Org Chem 2019; 85:1216-1223. [DOI: 10.1021/acs.joc.9b02520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Yanhui Chen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Zemin Zhao
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Dan Ba
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
16
|
Yu J, Wen S, Ba D, Lv W, Chen Y, Cheng G. Rhodium(III)-Catalyzed Regioselective C3-H Acylmethylation of [2,2'-Bipyridine]-6-carboxamides with Sulfoxonium Ylides. Org Lett 2019; 21:6366-6369. [PMID: 31361496 DOI: 10.1021/acs.orglett.9b02253] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rhodium(III)-catalyzed C-H acylmethylation of tridentate [2,2'-bipyridine]-6-carboxamides was developed. A variety of [2,2'-bipyridine]-6-carboxamides could be monoalkylated exclusively at the C3 position with sulfoxonium ylides as carbene precursors, giving 3-alkylated products in high yields. This protocol proceeds through a rollover cyclometalation pathway, has a broad range scope of substrates, and exhibits excellent functional group tolerance.
Collapse
Affiliation(s)
- Jia Yu
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Si Wen
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Dan Ba
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Weiwei Lv
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Yanhui Chen
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| | - Guolin Cheng
- School of Medicine, College of Materials Science & Engineering , Huaqiao University , Xiamen 361021 , China
| |
Collapse
|
17
|
Karak P, Dutta C, Dutta T, Koner AL, Choudhury J. Orchestrated catalytic double rollover annulation: rapid access to N-enriched cationic and neutral PAHs. Chem Commun (Camb) 2019; 55:6791-6794. [DOI: 10.1039/c9cc02710f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disclosed herein is a rhodium(iii)-catalyzed novel one-step back-to-back double rollover annulation on pyridine and pyrazine backbones leading to structurally and optoelectronically diverse class of nicely decorated multi-ring-fused, extensively π-conjugated, N-enriched PAH molecules by virtue of orchestrated quadruple C–H activation events.
Collapse
Affiliation(s)
- Pirudhan Karak
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Champak Dutta
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Tanoy Dutta
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Apurba Lal Koner
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| |
Collapse
|