Docampo-Palacios ML, Ramirez GA, Tesfatsion TT, Okhovat A, Pittiglio M, Ray KP, Cruces W. Saturated Cannabinoids: Update on Synthesis Strategies and Biological Studies of These Emerging Cannabinoid Analogs.
Molecules 2023;
28:6434. [PMID:
37687263 PMCID:
PMC10490552 DOI:
10.3390/molecules28176434]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Natural and non-natural hexahydrocannabinols (HHC) were first described in 1940 by Adam and in late 2021 arose on the drug market in the United States and in some European countries. A background on the discovery, synthesis, and pharmacology studies of hydrogenated and saturated cannabinoids is described. This is harmonized with a summary and comparison of the cannabinoid receptor affinities of various classical, hybrid, and non-classical saturated cannabinoids. A discussion of structure-activity relationships with the four different pharmacophores found in the cannabinoid scaffold is added to this review. According to laboratory studies in vitro, and in several animal species in vivo, HHC is reported to have broadly similar effects to Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive substance in cannabis, as demonstrated both in vitro and in several animal species in vivo. However, the effects of HHC treatment have not been studied in humans, and thus a biological profile has not been established.
Collapse