1
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Tanimoto H, Adachi R, Tanisawa K, Tomohiro T. Amphos-Mediated Conversion of Alkyl Azides to Diazo Compounds and One-Pot Azide-Site Selective Transient Protection, Click Conjugation, and Deprotective Transformation. Org Lett 2024. [PMID: 38502004 DOI: 10.1021/acs.orglett.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A one-pot conversion of alkyl azides to diazo compounds is outlined. After the reaction of α-azidocarbonyl compounds with Amphos, treatment of the resulting phosphazides with silica gel in a wet solvent afforded α-diazo carbonyl products. Through the azido group protection property of Amphos, inter- and intramolecular azide-site selective reactions of azido group protection, click functionalization, and deprotection of the diazo group have been demonstrated in one pot.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ryo Adachi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kodai Tanisawa
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
3
|
Luo W, Xu F, Wang Z, Pang J, Wang Z, Sun Z, Peng A, Cao X, Li L. Chemodivergent Staudinger Reactions of Secondary Phosphine Oxides and Application to the Total Synthesis of LL-D05139β Potassium Salt. Angew Chem Int Ed Engl 2023; 62:e202310118. [PMID: 37594845 DOI: 10.1002/anie.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
Unprecedented Staudinger reaction modes of secondary phosphine oxides (SPO) and organic azides are herein disclosed. By the application of various additives, selective nitrogen atom exclusion from the azide group has been achieved. Chlorotrimethylsilane mediates a stereoretentive Staudinger reaction with a 2-N exclusion which provides a valuable method for the synthesis of phosphinic amides and can be considered complementary to the stereoinvertive Atherton-Todd reaction. Alternatively, a 1-N exclusion pathway is promoted by acetic acid to provide the corresponding diazo compound. The effectiveness of this protocol has been further demonstrated by the total synthesis of the diazo-containing natural product LL-D05139β, which was prepared as a potassium salt for the first time in 6 steps and 26.5 % overall yield.
Collapse
Affiliation(s)
- Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of P. R. China, College of Pharmacy, Jinan University, 510632, Guangzhou, Guangdong, P. R. China
| | - Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zixu Wang
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhixiu Sun
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Aiyun Peng
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, 510006, Guangzhou, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| |
Collapse
|
4
|
Namioka R, Suzuki M, Yoshida S. Synthesis of 1,2,3-triazoles using Grignard reactions through the protection of azides. Front Chem 2023; 11:1237878. [PMID: 37583567 PMCID: PMC10424848 DOI: 10.3389/fchem.2023.1237878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
An efficient method to prepare organomagnesium intermediates having a protected azido group is reported. Protection of azido groups with di-(tert-butyl)(4-(dimethylamino)phenylphosphine (amphos) and following iodine-magnesium exchange realized the preparation of organomagnesium intermediates, which served in the synthesis of diverse azides by transformation with various electrophiles followed by deprotection with elemental sulfur. Furthermore, click reactions of azides with alkynes enabled synthesizing a wide variety of 1,2,3-triazoles.
Collapse
Affiliation(s)
- Rina Namioka
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Minori Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
5
|
Labiche A, Norlöff M, Feuillastre S, Taran F, Audisio D. Continuous Flow Synthesis of Non‐Symmetrical Ureas from CO
2. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Maylis Norlöff
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Sophie Feuillastre
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Frederic Taran
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| | - Davide Audisio
- Université Paris Saclay, CEA Département Médicaments et Technologies pour la Santé, SCBM 91191 Gif-sur-Yvette France
| |
Collapse
|
6
|
Tanimoto H. Development of Synthetic Chemistry on Organic Azides by Breaking their 1,3-Dipolar Characteristics. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Katayama A, Jin Y, Nishiyama Y, Hosoya T, Yokoshima S. Substitution of α-Azido Sulfones with Thiolates to Form α-Azido Sulfides. Org Lett 2022; 24:7361-7365. [PMID: 36178802 DOI: 10.1021/acs.orglett.2c02895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Upon treatment of α-azido sulfones with a thiol in the presence of 1,1,3,3-tetramethylguanidine, substitution of the sulfonyl group with a thiolate occurred, resulting in the formation of α-azido sulfides. Based on experimental results and DFT calculations, a reaction mechanism that involves the addition of a thiolate to the azido group and generation of an alkylidene triazene is proposed.
Collapse
Affiliation(s)
- Akito Katayama
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuan Jin
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshitake Nishiyama
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
8
|
Ishizawa S, Tumurkhuu M, Gross EJ, Ohata J. Site-specific DNA functionalization through the tetrazene-forming reaction in ionic liquids. Chem Sci 2022; 13:1780-1788. [PMID: 35282632 PMCID: PMC8826848 DOI: 10.1039/d1sc05204g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/15/2022] [Indexed: 11/21/2022] Open
Abstract
Site-specific chemical modification of unprotected DNAs through a phosphine-mediated amine–azide coupling reaction in ionic liquid.
Collapse
Affiliation(s)
- Seiya Ishizawa
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Munkhtuya Tumurkhuu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth J. Gross
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Sakata Y, Yoshida S, Hosoya T. Synthesis of Azidoanilines by the Buchwald-Hartwig Amination. J Org Chem 2021; 86:15674-15688. [PMID: 34694814 DOI: 10.1021/acs.joc.1c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a Buchwald-Hartwig amination compatible with azido functionality. Treatment of azidoaryl iodides and amines with fourth-generation Buchwald precatalyst coordinated by CPhos and sodium tert-butoxide in 1,4-dioxane at 50 °C afforded the corresponding azidoanilines while leaving the azido groups intact. The method showed a broad substrate scope and was applicable to the synthesis of diazido compounds as photoaffinity probe candidates of pharmaceutical amines and multiazido platform molecules.
Collapse
Affiliation(s)
- Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo101-0062, Japan
| |
Collapse
|
10
|
El-Shaffey HM, Gross EJ, Hall YD, Ohata J. An Ionic Liquid Medium Enables Development of a Phosphine-Mediated Amine-Azide Bioconjugation Method. J Am Chem Soc 2021; 143:12974-12979. [PMID: 34387473 DOI: 10.1021/jacs.1c06092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
While a diverse set of design strategies have produced various chemical tools for biomolecule labeling in aqueous media, the development of nonaqueous, biomolecule-compatible media for bioconjugation has significantly lagged behind. In this report, we demonstrate that an aprotic ionic liquid serves as a novel reaction solvent for protein bioconjugation without noticeable loss of the biomolecule functions. The ionic liquid bioconjugation approach led to discovery of a novel triphenylphosphine-mediated amine-azide coupling reaction that forges a stable tetrazene linkage on unprotected peptides and proteins. This strategy of using untraditional media would provide untapped opportunities for expanding the scope of chemical approaches for bioconjugation.
Collapse
Affiliation(s)
- Hisham M El-Shaffey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elizabeth J Gross
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yvonne D Hall
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Aimi T, Meguro T, Kobayashi A, Hosoya T, Yoshida S. Nucleophilic transformations of azido-containing carbonyl compounds via protection of the azido group. Chem Commun (Camb) 2021; 57:6062-6065. [PMID: 34036976 DOI: 10.1039/d1cc01143j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nucleophilic transformations of azido-containing carbonyl compounds are discussed. The phosphazide formation from azides and di(tert-butyl)(4-(dimethylamino)phenyl)phosphine (Amphos) enabled transformations of carbonyl groups with nucleophiles such as lithium aluminum hydride and organometallic reagents. The good stability of the phosphazide moiety allowed us to perform consecutive transformations of a diazide through triazole formation and the Grignard reaction.
Collapse
Affiliation(s)
- Takahiro Aimi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | | | |
Collapse
|
12
|
Walz Mitra KL, Chang CH, Hanrahan MP, Yang J, Tofan D, Holden WM, Govind N, Seidler GT, Rossini AJ, Velian A. Surface Functionalization of Black Phosphorus with Nitrenes: Identification of P=N Bonds by Using Isotopic Labeling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kendahl L. Walz Mitra
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | - Christine H. Chang
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Michael P. Hanrahan
- US DOE Ames Laboratory and Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Jiaying Yang
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | - Daniel Tofan
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | | | | | | | - Aaron J. Rossini
- US DOE Ames Laboratory and Department of Chemistry Iowa State University Ames IA 50011 USA
| | - Alexandra Velian
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| |
Collapse
|
13
|
Walz Mitra KL, Chang CH, Hanrahan MP, Yang J, Tofan D, Holden WM, Govind N, Seidler GT, Rossini AJ, Velian A. Surface Functionalization of Black Phosphorus with Nitrenes: Identification of P=N Bonds by Using Isotopic Labeling. Angew Chem Int Ed Engl 2021; 60:9127-9134. [PMID: 33338295 DOI: 10.1002/anie.202016033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/11/2022]
Abstract
Surface functionalization of two-dimensional crystals is a key path to tuning their intrinsic physical and chemical properties. However, synthetic protocols and experimental strategies to directly probe chemical bonding in modified surfaces are scarce. Introduced herein is a mild, surface-specific protocol for the surface functionalization of few-layer black phosphorus nanosheets using a family of photolytically generated nitrenes (RN) from the corresponding azides. By embedding spectroscopic tags in the organic backbone, a multitude of characterization techniques are employed to investigate in detail the chemical structure of the modified nanosheets, including vibrational, X-ray photoelectron, solid state 31 P NMR, and UV-vis spectroscopy. To directly probe the functional groups introduced on the surface, R fragments were selected such that in conjunction with vibrational spectroscopy, 15 N-labeling experiments, and DFT methods, diagnostic P=N vibrational modes indicative of iminophosphorane units on the nanosheet surface could be conclusively identified.
Collapse
Affiliation(s)
- Kendahl L Walz Mitra
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - Christine H Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Michael P Hanrahan
- US DOE Ames Laboratory and Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Jiaying Yang
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - Daniel Tofan
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - William M Holden
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Niranjan Govind
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gerald T Seidler
- Department of Physics, University of Washington, Seattle, WA, 98195, USA
| | - Aaron J Rossini
- US DOE Ames Laboratory and Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Alexandra Velian
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
14
|
Yoshida S, Sakata Y, Misawa Y, Morita T, Kuribara T, Ito H, Koike Y, Kii I, Hosoya T. Assembly of four modules onto a tetraazide platform by consecutive 1,2,3-triazole formations. Chem Commun (Camb) 2021; 57:899-902. [PMID: 33367381 DOI: 10.1039/d0cc07789e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient consecutive 1,2,3-triazole formations using multiazide platforms are disclosed. On the basis of unique clickability of the 1-adamantyl azido group, a four-step synthesis of tetrakis(triazole)s was achieved from a tetraazide platform molecule. This method was applied to a convergent synthesis of tetrafunctionalized probes in a modular synthetic manner.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yoshihiro Misawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamoto Morita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Harumi Ito
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan. and Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuka Koike
- Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Isao Kii
- Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan and Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
15
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
16
|
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front 2021. [DOI: 10.1039/d1qo01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intramolecular hydrogen bonding in the α-azido secondary acetamides (α-AzSAs) enabled site-selective integration onto the diazide modular hubs even without steric hindrance.
Collapse
Affiliation(s)
- Koshiro Maegawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Seiji Onishi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
17
|
Takemura H, Goto S, Hosoya T, Yoshida S. 2-Azidoacrylamides as compact platforms for efficient modular synthesis. Chem Commun (Camb) 2020; 56:15541-15544. [PMID: 33241832 DOI: 10.1039/d0cc07212e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient methods to assemble modules with compact platform molecules by triazole formations and Michael reactions are disclosed. The good electrophilicity of 2-triazolylacrylamides realized Michael additions using various nucleophiles. An iterative synthesis of a tetrakis(triazole) was accomplished by orthogonal triazole formations and Michael reactions.
Collapse
Affiliation(s)
- Hinano Takemura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | |
Collapse
|
18
|
Terashima N, Sakata Y, Meguro T, Hosoya T, Yoshida S. Triazole formation of phosphinyl alkynes with azides through transient protection of phosphine by copper. Chem Commun (Camb) 2020; 56:14003-14006. [PMID: 33094760 DOI: 10.1039/d0cc06551j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient preparation method of functionalized phosphines by copper-catalyzed azide-alkyne cycloaddition (CuAAC) through the transient protection of phosphine from the Staudinger reaction is disclosed. Diverse phosphines were prepared from phosphinyl alkynes and azides by the click reaction at the ethynyl group without damaging the phosphinyl group. Double- and triple-click assemblies of azides were accomplished by triazole formations and robust azaylide formation.
Collapse
Affiliation(s)
- Norikazu Terashima
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
19
|
Makio N, Sakata Y, Kuribara T, Adachi K, Hatakeyama Y, Meguro T, Igawa K, Tomooka K, Hosoya T, Yoshida S. (Hexafluoroacetylacetonato)copper(I)-cycloalkyne complexes as protected cycloalkynes. Chem Commun (Camb) 2020; 56:11449-11452. [PMID: 32852507 DOI: 10.1039/d0cc05182a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A protection method for cycloalkynes by the formation of (hexafluoroacetylacetonato)copper(i)-cycloalkyne complexes is disclosed. Various complexes having functional groups were efficiently prepared, which are easily purified by silica-gel column chromatography. Selective click reactions were realized through the complexation of cycloalkynes with copper.
Collapse
Affiliation(s)
- Naoaki Makio
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Keisuke Adachi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yasutomo Hatakeyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
20
|
Adachi K, Meguro T, Sakata Y, Igawa K, Tomooka K, Hosoya T, Yoshida S. Selective strain-promoted azide-alkyne cycloadditions through transient protection of bicyclo[6.1.0]nonynes with silver or gold. Chem Commun (Camb) 2020; 56:9823-9826. [PMID: 32716445 DOI: 10.1039/d0cc04606j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Complexation of bicyclo[6.1.0]nonynes with a cationic silver or gold salt results in protection from a click reaction with azides. The cycloalkyne protection using the silver or gold salt enables selective strain-promoted azide-alkyne cycloadditions of diynes keeping the bicyclo[6.1.0]nonyne moiety unreacted.
Collapse
Affiliation(s)
- Keisuke Adachi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
21
|
Albuerne IG, Alvarez MA, García ME, García-Vivó D, Ruiz MA, Vega P. P–N and N–Mo Bond Formation Processes in the Reactions of a Pyramidal Phosphinidene-Bridged Dimolybdenum Complex with Diazoalkanes and Organic Azides. Inorg Chem 2020; 59:7869-7883. [DOI: 10.1021/acs.inorgchem.0c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Isabel G. Albuerne
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - M. Angeles Alvarez
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - M. Esther García
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Daniel García-Vivó
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Miguel A. Ruiz
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| | - Patricia Vega
- Departamento de Química Orgánica e Inorgánica/IUQOEM, Universidad de Oviedo, E-33071 Oviedo, Spain
| |
Collapse
|
22
|
Yoshida S. Sequential conjugation methods based on triazole formation and related reactions using azides. Org Biomol Chem 2020; 18:1550-1562. [PMID: 32016260 DOI: 10.1039/c9ob02698c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent remarkable progress in azide chemistry has realized sequential conjugation methods with selective 1,2,3-triazole formation. On the basis of the diverse reactivities of azides and azidophiles, including terminal alkynes and cyclooctynes, various selective reactions to furnish triazoles and a wide range of platform molecules, such as diynes, diazides, triynes, and triazides, have been developed so far for bis- and tris(triazole) syntheses. This review highlights recent transformations involving selective triazole formation, allowing the efficient preparation of unsymmetric bis- and tris(triazole)s using diverse platform molecules.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
23
|
Meguro T, Sakata Y, Morita T, Hosoya T, Yoshida S. Facile assembly of three cycloalkyne-modules onto a platform compound bearing thiophene S,S-dioxide moiety and two azido groups. Chem Commun (Camb) 2020; 56:4720-4723. [DOI: 10.1039/d0cc01810d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient method to assemble three cycloalkyne-modules onto a platform bearing a thiophene S,S-dioxide moiety and two azido groups has been developed. The sequential reactions without catalysis or additives enabled the facile preparation of trifunctional molecules by a simple procedure.
Collapse
Affiliation(s)
- Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Takamoto Morita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| |
Collapse
|
24
|
Yoshida S, Goto S, Nishiyama Y, Hazama Y, Kondo M, Matsushita T, Hosoya T. Effect of Resonance on the Clickability of Alkenyl Azides in the Strain-promoted Cycloaddition with Dibenzo-fused Cyclooctynes. CHEM LETT 2019. [DOI: 10.1246/cl.190400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Sayuri Goto
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masakazu Kondo
- Ichihara Research Center, JNC Petrochemical Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Takeshi Matsushita
- Ichihara Research Center, JNC Petrochemical Corporation, 5-1 Goikaigan, Ichihara, Chiba 290-8551, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
25
|
Topchiy MA, Ageshina AA, Chesnokov GA, Sterligov GK, Rzhevskiy SA, Gribanov PS, Osipov SN, Nechaev MS, Asachenko AF. Alkynyl‐ or Azido‐Functionalized 1,2,3‐Triazoles: Selective MonoCuAAC Promoted by Physical Factors. ChemistrySelect 2019. [DOI: 10.1002/slct.201902135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Alexandra A. Ageshina
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Gleb A. Chesnokov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Grigorii K. Sterligov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Sergey A. Rzhevskiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Pavel S. Gribanov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Mikhail S. Nechaev
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| |
Collapse
|
26
|
Abstract
The bioorthogonal reaction toolbox contains approximately two-dozen unique chemistries that permit selective tagging and probing of biomolecules. Over the past two decades, significant effort has been devoted to optimizing and discovering bioorthogonal reagents that are faster, fluorogenic, and orthogonal to the already existing bioorthogonal repertoire. Conversely, efforts to explore bioorthogonal reagents whose reactivity can be controlled in space and/or time are limited. The "activatable" bioorthogonal reagents that do exist are often unimodal, meaning that their reagent's activation method cannot be easily modified to enable activation with red-shifted wavelengths, enzymes, or metabolic-byproducts and ions like H2O2 or Fe3+. Here, we summarize the available activatable bioorthogonal reagents with a focus on our recent addition: modular caged cyclopropenes. We designed caged cyclopropenes to be unreactive to their bioorthogonal partner until they are activated through the removal of the cage by light, an enzyme, or another reaction partner. To accomplish this, their structure includes a nitrogen atom at the cyclopropene C3 position that is decorated with the desired caging group through a carbamate linkage. This 3-N cyclopropene system can allow control of cyclopropene reactivity using a multitude of already available photo- and enzyme-caging groups. Additionally, this cyclopropene scaffold can enable metabolic-byproduct or ion activation of bioorthogonal reactions.
Collapse
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
27
|
Yoshida S, Kuribara T, Ito H, Meguro T, Nishiyama Y, Karaki F, Hatakeyama Y, Koike Y, Kii I, Hosoya T. A facile preparation of functional cycloalkynes via an azide-to-cycloalkyne switching approach. Chem Commun (Camb) 2019; 55:3556-3559. [DOI: 10.1039/c9cc01113g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Terminal alkyne-selective click conjugation of diynes bearing strained and terminal alkyne moieties with functional azides has been achieved by transient protection of strained alkynes via complexation with copper to easily afford various functional cycloalkynes.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Harumi Ito
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
- Laboratory for Pathophysiological and Health Science
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Fumika Karaki
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yasutomo Hatakeyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yuka Koike
- Common Facilities Unit
- Compass to Healthy Life Research Complex Program
- RIKEN Cluster for Science
- Technology and Innovation Hub
- Kobe 650-0047
| | - Isao Kii
- Laboratory for Pathophysiological and Health Science
- RIKEN Center for Biosystems Dynamics Research (BDR)
- Kobe 650-0047
- Japan
- Common Facilities Unit
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
- Laboratory for Chemical Biology
| |
Collapse
|
28
|
Yokoi T, Ueda T, Tanimoto H, Morimoto T, Kakiuchi K. Site-selective conversion of azido groups at carbonyl α-positions into oxime groups leading triazide to a triple click conjugation scaffold. Chem Commun (Camb) 2019; 55:1891-1894. [DOI: 10.1039/c8cc09415b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This paper reports the selective conversion of alkyl azido groups at the carbonyl α-position into oximes, and one-pot triple click conjugation is demonstrated.
Collapse
Affiliation(s)
- Taiki Yokoi
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Tomomi Ueda
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Hiroki Tanimoto
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Tsumoru Morimoto
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Kiyomi Kakiuchi
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| |
Collapse
|
29
|
Hosoya T, Yoshida S, Nishiyama Y, Misawa Y, Hazama Y, Oya K. Synthesis of Diverse 3-Azido-5-(azidomethyl)benzene Derivatives via Formal C–H Azidation and Functional Group-Selective Transformations. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Yokoi T, Tanimoto H, Ueda T, Morimoto T, Kakiuchi K. Site-Selective Conversion of Azido Groups at Carbonyl α-Positions to Diazo Groups in Diazido and Triazido Compounds. J Org Chem 2018; 83:12103-12121. [DOI: 10.1021/acs.joc.8b02074] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Taiki Yokoi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tomomi Ueda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
31
|
Yoshida S, Tanaka J, Nishiyama Y, Hazama Y, Matsushita T, Hosoya T. Further enhancement of the clickability of doubly sterically-hindered aryl azides by para-amino substitution. Chem Commun (Camb) 2018; 54:13499-13502. [DOI: 10.1039/c8cc05791e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction of an amino group at the para position of doubly sterically-hindered aryl azides significantly enhances their clickability with cyclooctynes.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Junko Tanaka
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yoshitake Nishiyama
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | | | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| |
Collapse
|