1
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Three-Component Tandem Cyclization for One-Pot Synthesis of Indole-Benzofuran Bis-Heterocycles. J Org Chem 2024; 89:17168-17175. [PMID: 39576131 DOI: 10.1021/acs.joc.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A one-pot, three-component synthesis of indole-benzofuran bis-heterocycles from terminal alkynes, salicylaldehydes, and indoles has been developed via copper-catalyzed tandem annulation. This catalytic system utilizes readily available starting materials, enabling predictable synthesis of indole-benzofuran bis-heterocycles with broad substrate versatility, excellent regiocontrol, and gram-scale amenability. The reaction proceeds via a sequential pathway involving A3 coupling, 1,4-conjugate addition, and 5-exo-dig cyclization.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Wang YQ, Chen LJ, Yang RL, Lang M, Peng JB. Oxidative [4+2] Annulation of Pyrrole-2-carbaldehyde Derivatives with o-Hydroxyphenyl Propargylamines: Syntheses of 5,6,7-Trisubstituted Indolizines. Chemistry 2024; 30:e202402487. [PMID: 39177474 DOI: 10.1002/chem.202402487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
A base promoted oxidative [4+2] annulation of pyrrole-2-carbaldehyde derivatives with o-hydroxyphenyl propargylamines for the synthesis of highly substituted indolizines has been developed. Using DBN as base, a broad range of 5,6,7-trisubstituted indolizines have been prepared in good to excellent yields under mild conditions, and many useful functional groups can be tolerated.
Collapse
Affiliation(s)
- Yu-Qing Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Li-Jia Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Rui-Lin Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Ming Lang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| |
Collapse
|
3
|
Tu L, Li S, Gao LM, Tang BW, Zheng YS, Liu JK. Cooperative Rh/Achiral Phosphoric Acid-Enabled [3+3] Cycloannulation of Carbonyl Ylides with Quinone Monoimines: Synthesis of Benzofused Dioxabicyclo[3.2.1]octane Scaffolds. J Org Chem 2024; 89:9031-9042. [PMID: 38829824 DOI: 10.1021/acs.joc.3c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A cooperative Rh/achiral phosphoric acid-enabled [3+3] cycloaddition of in situ-generated carbonyl ylides with quinone monoimines has been developed. With the ability to build up the molecular complexity rapidly and efficiently, this method furnishes highly functionalized oxa-bridged benzofused dioxabicyclo[3.2.1]octane scaffolds bearing two quaternary centers in good to excellent yields under mild conditions. Moreover, the utility of the current method was demonstrated by gram-scale synthesis and elaboration of the products into various functionalized oxa-bridged heterocycles.
Collapse
Affiliation(s)
- Liang Tu
- School of Pharmaceutical Sciences and National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Sen Li
- School of Pharmaceutical Sciences and National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Li-Mei Gao
- School of Pharmaceutical Sciences and National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Bo-Wei Tang
- School of Pharmaceutical Sciences and National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Yong-Sheng Zheng
- School of Pharmaceutical Sciences and National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences and National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
4
|
Liu Y, Choy PY, Wang D, Wu M, Tang Q, He X, Shang Y, Kwong FY. Cascade Annulation Strategy for Expeditious Assembly of Hydroxybenzo[ c]chromen-6-ones and Their Photophysical Property Studies. J Org Chem 2023; 88:16609-16620. [PMID: 37978943 DOI: 10.1021/acs.joc.3c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A 1,8-diazabicyclo[5.4.0]undec-7-ene-promoted cascade double-annulation of ortho-alkynyl quinone methide (in situ generated from modular propargylamine) for constructing of 2-aryl-4-hydroxybenzo[c]chromen-6-ones is developed. This synthetic strategy offers remarkable operational simplicity as it allows the use of benchtop-grade solvents without the need for predrying measures and inert atmosphere protection. Additionally, it demonstrates good functional group compatibility. The photophysical properties of these compounds were also examined, revealing bright fluorescence with high quantum yields.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Pui Ying Choy
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong, P. R. China
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Fuk Yee Kwong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, New Territories, Shatin, Hong Kong, P. R. China
| |
Collapse
|
5
|
Xu L, Rong Y, Liao H, Pan M, Qian Y, Rong L, Zhang J. Construction of Spiro[benzo[ a]acridine-12,4'-imidazolidine]-2',5'-dione Derivatives via Ring-Opening and Recyclization of Isatins and C-OH Cleavage of 2-Naphthol. J Org Chem 2023. [PMID: 37154738 DOI: 10.1021/acs.joc.3c00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An efficient three-component reaction to access spiro[benzo[a]acridine-12,4'-imidazolidine]-2',5'-dione derivatives has been developed through the ring-opening and recyclization process of isatins and dehydroxylation of 2-naphthol, which is different from their conventional reaction modes. Experimental observations suggest that p-toluenesulfonic acid is the key factor that promotes the success of this synthetic strategy. The research provided a novel approach for the construction of spiro compounds from isatins and 2-naphthol in organic synthesis.
Collapse
Affiliation(s)
- Linlin Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Yuchen Rong
- Taizhou Institute of Science & Technology, Nanjing University of Science and Technology, Taizhou 22539, Jiangsu, P. R. China
| | - Hailin Liao
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Mei Pan
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Yuliang Qian
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Liangce Rong
- Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| |
Collapse
|
6
|
Fan YX, Huang HL, Su QQ, Lv YZ, Li S, Ma YH, Mao YX, Ma CL, Du JY. Brønsted acid-mediated tandem cyclization of triarylphosphines and in situ generated ortho-alkynyl quinone methides: access to heterocyclic quaternary phosphonium salts. Chem Commun (Camb) 2023; 59:3463-3466. [PMID: 36872868 DOI: 10.1039/d2cc06994f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Heterocyclic Quaternary Phosphonium Salts (HQPS) have emerged as promising chemicals for organic synthesis and medicinal chemistry. However, the present synthetic methodology of this type of compound is still limited. Here, we report a deconstructive reorganization strategy based on Brønsted acid-mediated tandem 1,4 addition/intramolecular cyclization of triphenylphosphine derivatives and in situ generated o-AQMs for the first time. This protocol provides a novel approach to heterocyclic quaternary phosphonium salts. The method also features a non-metal catalyst, mild reaction conditions, high efficiency and wide substrate scope. Moreover, a series of obtained heterocyclic phosphonium salts can be converted to isotopically labelled 2-benzofuran compounds directly by simple deuteration reactions.
Collapse
Affiliation(s)
- Ya-Xin Fan
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Qing-Qiang Su
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yong-Zheng Lv
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Shan Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yan-Hua Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yan-Xin Mao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Chun-Lin Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
7
|
Murugesan A, Kari S, Shrestha A, Assoah B, Saravanan KM, Murugesan M, Thiyagarajan R, Candeias NR, Kandhavelu M. Methanodibenzo[ b, f][1,5]dioxocins as Novel Glutaminase Inhibitor with Anti-Glioblastoma Potential. Cancers (Basel) 2023; 15:cancers15041010. [PMID: 36831355 PMCID: PMC9954004 DOI: 10.3390/cancers15041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Glutamine metabolism is an important hallmark of several cancers with demonstrated antitumor activity in glioblastoma cancer cells (GBM). GBM cells regulate glutamine and use it as a major energy source for their proliferation through the glutaminolysis process. Enzymes, such as glutaminase in glutaminolysis, can be targeted by small-molecule inhibitors, thus exhibiting promising anticancer properties. The resistance to glutaminolysis demands the development of new therapeutic molecules to overcome drug resistance. Herein, we have reported a novel library of constrained methanodibenzo[b,f][1,5]dioxocin derivatives as glutaminase (GLS) inhibitors and their anti-GBM potential. The library consisting of seven molecules was obtained through self-condensation of 2'-hydroxyacetophenones, out of which three molecules, namely compounds 3, 5, and 6, were identified with higher binding energy values ranging between -10.2 and -9.8 kcal/mol with GLS (PDB ID; 4O7D). Pharmacological validation of these compounds also showed a higher growth inhibition effect in GBM cells than the standard drug temozolomide (TMZ). The most promising compound, 6, obeyed Lipinski's rule of five and was identified to interact with key residues Arg307, Asp326, Lys328, Lys399, and Glu403 of GLS. This compound exhibited the best cytotoxic effect with IC50 values of 63 µM and 83 µM in LN229 and SNB19 cells, respectively. The potential activation of GLS by the best-constrained dibenzo[b,f][1,5]dioxocin in the tested series increased apoptosis via reactive oxygen species production in both GBM cells, and exhibited anti-migratory and anti-proliferative properties over time in both cell lines. Our results highlight the activation mechanism of a dibenzo[b,f][1,5]dioxocin from the structural basis and demonstrate that inhibition of glutaminolysis may facilitate the pharmacological intervention for GBM treatment.
Collapse
Affiliation(s)
- Akshaya Murugesan
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Sana Kari
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
| | - Anita Shrestha
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
| | - Benedicta Assoah
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education & Research, Chennai 600073, India
| | - Monica Murugesan
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
- Correspondence:
| |
Collapse
|
8
|
Chen G, Li H, Liang G, Pu Q, Bai L, Zhang D, Ye Y, Li Y, Zhou J, Zhou H. Facile construction of dibenzodioxo[3.3.1]nonanes bearing spirocyclohexadienones via domino [4 + 2] cycloaddition/C(sp 3)-H oxidative dehydrogenation coupling reactions. Org Biomol Chem 2022; 20:9392-9396. [PMID: 36398442 DOI: 10.1039/d2ob01860h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel palladium catalyzed homodimerization of ortho-hydroxyphenyl substituted p-QMs has been developed via [4 + 2] cycloaddition/oxidative dehydrogenation coupling domino reactions. An interesting palladium catalyzed intramolecular benzyl C-H oxidation dehydrogenation to form a transannular C(sp3)-O bond was found. This protocol provided an efficient method to construct various dibenzodioxo[3.3.1]nonanes bearing spirocyclohexadienones.
Collapse
Affiliation(s)
- Genhui Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hongjiao Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Qian Pu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Dexin Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Ying Ye
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Li Z, Zhang PX, Li ZZ, Zhang XL, Cao HY, Gao YN, Bian M, Chen HY, Liu ZJ. Diastereoselective Synthesis of Chromeno[3,2- d]isoxazoles via Brønsted Acid Catalyzed Tandem 1,6-Addition/Double Annulations of o-Hydroxyl Propargylic Alcohols. Org Lett 2022; 24:6863-6868. [PMID: 36102802 DOI: 10.1021/acs.orglett.2c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Brønsted acid catalyzed tandem process to access densely functionalized chromeno[3,2-d]isoxazoles with good to excellent yields and diastereoselectivities was disclosed. The procedure is proposed to involve a 1,6-conjugate addition/electrophilic addition/double annulations process of alkynyl o-quinone methides (o-AQMs) in situ generated from o-hydroxyl propargylic alcohols with nitrones. Mild conditions, good functional group compatibility, easy scale-up of the reaction, and further product transformation demonstrated its potential application.
Collapse
Affiliation(s)
- Zhu Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Pei-Xu Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhao-Zhao Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Xing-Lu Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Hong-Yuan Cao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Yu-Ning Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Ming Bian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Hui-Yu Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Yi MH, Jin HS, Wang RB, Zhao LM. Copper-Catalyzed Cascade Annulation of o-Hydroxyphenyl Propargylamines with Pyrazolin-5-ones to Access Pyrano[2,3- c]pyrazoles. J Org Chem 2022; 87:5795-5803. [PMID: 35442039 DOI: 10.1021/acs.joc.2c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient copper-catalyzed cascade annulation of o-hydroxyphenyl propargylamines and pyrazolin-5-ones is described. This methodology leads to the rapid assembly of a series of valuable pyrano[2,3-c]pyrazoles with good yields across a wide range of substrates in a simple fashion. This novel reaction involves the formation of alkynyl ortho-quinone methides, a 1,4-conjugate addition, and a subsequent 6-endo cyclization process. The mechanistic elucidation is well supported by control experiment and literature precedents.
Collapse
Affiliation(s)
- Meng-Hao Yi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
11
|
Wang RN, Ma YH, Su QQ, Fan YX, Lv YZ, Zhang XZ, Wang YL, Huang HL, Du JY. Acid-promoted formal [3 + 2] cyclization/ N, O-ketalization of in situ generated ortho-alkynyl quinone methides: access to bridged 2,3-cyclopentanoindoline skeletons. Org Chem Front 2022. [DOI: 10.1039/d2qo00234e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An acid-catalyzed formal [3 + 2] cyclization/N,O-ketalization of in situ formed ortho-alkynyl quinone methides (o-AQMs) and tryptophol derivatives was developed.
Collapse
Affiliation(s)
- Ruo-Nan Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yan-Hua Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qing-Qiang Su
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ya-Xin Fan
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yong-Zheng Lv
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yan-Lan Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
12
|
Gharpure SJ, Jegadeesan S, Vishwakarma DS. Total synthesis of myristinins A–F and 3′-hydroxy-5,7-dimethoxy-4- O-2′-cycloflavan by iterative generation of o-quinone methides. NEW J CHEM 2022. [DOI: 10.1039/d2nj00244b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iterative generation of o-quinone methides (o-QMs) and [4+2] cycloaddition followed by inter/intra-molecular Michael addition in a cascade sequence gave expedient access to the total synthesis of myristinins A–F and 3′-hydroxy-5,7-dimethoxy-4-O-2′-cycloflavan and their analogues, respectively.
Collapse
Affiliation(s)
- Santosh J. Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India
| | - S. Jegadeesan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400076, India
| | | |
Collapse
|
13
|
Duan J, He X, Choy PY, Wang Q, Xie M, Li R, Xu K, Shang Y, Kwong FY. Cascade Lactonization/Benzannulation of Propargylamines with Dimethyl 3-Oxoglutarate for Modular Assembly of Hydroxylated/Arene-Functionalized Benzo[ c]chromen-6-ones. Org Lett 2021; 23:6455-6460. [PMID: 34342448 DOI: 10.1021/acs.orglett.1c02266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A DBU-mediated cascade strategy of propargylamines with dimethyl 3-oxoglutarate for constructing a functionalized benzo[c]chromen-6-one core has been achieved. This cascade process presumably involves a sequence of 1,4-conjugate addition, followed by lactonization, alkyne-allene isomerization, enol-keto tautomerization, 6π-electrocyclization, and aromatization. This protocol features mild reaction conditions, simple operation, rich structural diversity, and good functional group tolerance. A photophysical survey reveals that the benzo[c]chromen-6-one products exhibit fluorescence properties and show potential for exploring fluorescent material applications.
Collapse
Affiliation(s)
- Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| | - Qi Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - KeKe Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P.R. China
| |
Collapse
|
14
|
Kishore DR, Shekhar C, Satyanarayana G. Lewis Acid Mediated Domino Intramolecular Cyclization: Synthesis of Dihydrobenzo[ a]fluorenes. J Org Chem 2021; 86:8706-8725. [PMID: 34110165 DOI: 10.1021/acs.joc.1c00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient and facile method for the regioselective synthesis of novel dihydrobenzo[a]fluorenes from readily accessible alkynols is presented. The current strategy triggers the formation of a dual C-C bond intramolecularly via Lewis acid catalysis under mild reaction conditions. Notably, secondary as well as tertiary alcohols bearing an alkyne moiety have been smoothly transformed into the corresponding products. As a result, novel tetracyclic dihydrobenzo[a]fluorenes have been accomplished using this approach.
Collapse
Affiliation(s)
- Dakoju Ravi Kishore
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi 502 285, Sangareddy District, Telangana, India
| | - Chander Shekhar
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi 502 285, Sangareddy District, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad, Kandi 502 285, Sangareddy District, Telangana, India
| |
Collapse
|
15
|
Chen L, Liu X, Zhang J, Duan L, Wen Z, Ni H. Relay Cu(I)/Brønsted Base Catalysis for
Phospha
‐Michael Addition/5‐
exo
‐
dig
Cyclization/Isomerization of
in
situ
Formed
aza
‐Alkynyl
o‐
quinone methides with P(O)−H compounds to C3‐Phosphorylated Indoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Jing Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Li Duan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University 2025 Chengluo Avenue Chengdu 610016 People's Republic of China
| | - Hai‐Liang Ni
- College of Chemistry and Materials Science Sichuan Normal University 5 Jing An Road Chengdu 610066 People's Republic of China
| |
Collapse
|
16
|
Yan LQ, Yin Z, He X, Li Q, Li R, Duan J, Xu K, Tang Q, Shang Y. Copper-Catalyzed Cascade 1,4-Addition/Annulation/Hydrolysis of Propargylamines with 2-Hydroxynaphthalene-1,4-diones: Direct Formation of 12-Phenacyl-11 H-benzo[ b]xanthenes. J Org Chem 2021; 86:4182-4192. [PMID: 33625853 DOI: 10.1021/acs.joc.0c03029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and versatile approach to construct 12-phenacyl-11H-benzo[b]xanthene-6,11(12H)-dione derivatives through copper-catalyzed cascade reaction of propargylamines with 2-hydroxynaphthalene-1,4-diones has been developed. The procedure is proposed to go through a sequence of 1,4-conjugate addition, intramolecular nucleophilic addition/dehydration, and hydrolysis of alkyne followed by an enol-ketone tautomerization. The reaction provides a new and highly efficient method for the synthesis of 12-phenacyl-11H-benzo[b]xanthene-6,11(12H)-diones by formation of three new bonds and one heterocycle from readily available starting materials in good to high yields (70-88%) with broad functional group compatibility in a single step.
Collapse
Affiliation(s)
- Li-Qin Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Zhenzhen Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qianqian Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Keke Xu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
17
|
Chen X, Shatskiy A, Liu JQ, D Kärkäs M, Wang XS. Synthesis of Sulfonylated Heterocycles via Copper-Catalyzed Heteroaromatization/Sulfonyl Transfer of Propargylic Alcohols. Chem Asian J 2021; 16:30-33. [PMID: 33025769 DOI: 10.1002/asia.202001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Indexed: 01/04/2023]
Abstract
An unprecedented copper-catalyzed heteroaromatization/sulfonyl transfer of propargylic alcohols with isocyanide has been developed. 3-Sulfonyl benzofurans and indoles were produced under Cu(I) catalysis in good to high yields. The developed catalytic methodology provides controlled, modular, and facile access to sulfonyl benzoheterocycle scaffolds.
Collapse
Affiliation(s)
- Xinyi Chen
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China.,Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P. R. China
| |
Collapse
|
18
|
Vachan BS, Karuppasamy M, Jan G, Bhuvanesh N, Maheswari CU, Sridharan V. Direct Access to Bridged Tetrahydroquinolines and Chromanes via an InCl 3-Catalyzed Sequential Three-Component Cascade. J Org Chem 2020; 85:8062-8073. [PMID: 32452689 DOI: 10.1021/acs.joc.0c00893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A sequential three-component cascade process was developed for the synthesis of bridged tetrahydroquinolines and chromanes bearing 2,6-methanobenzo[d][1,3]diazocine and 2,6-methanobenzo[g][1,3]oxazocine scaffolds, respectively, in good yields from readily available materials. The InCl3-catalyzed reaction progressed via enamine formation, Michael addition, intramolecular cyclization, and intramolecular iminium ion cyclization steps. Notably, this high atom economic approach (-2H2O) allowed the generation of four new bonds (1 C-C and 3 C-N or 1 C-C, 1 C-O and 2 C-N) and two heterocyclic rings in a single operation.
Collapse
Affiliation(s)
- B S Vachan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Muthu Karuppasamy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Gowsia Jan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu 181143, Jammu and Kashmir, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Vellaisamy Sridharan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.,Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Samba, Jammu 181143, Jammu and Kashmir, India
| |
Collapse
|
19
|
He X, Xie M, Li R, Choy PY, Tang Q, Shang Y, Kwong FY. Organocatalytic Approach for Assembling Flavanones via a Cascade 1,4-Conjugate Addition/oxa-Michael Addition between Propargylamines with Water. Org Lett 2020; 22:4306-4310. [DOI: 10.1021/acs.orglett.0c01357] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| |
Collapse
|
20
|
Tang Q, He X, Zhang J, Zhou T, Xie M, Li R, Zuo Y, Shang Y. Selective synthesis of 2‐(5‐oxo‐1‐arylhex‐1‐yn‐3‐yl)phenyl benzoates via FeCl
3
‐mediated cascade reactions of propargylamines with
β
‐enamino ketones. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Jinxue Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| |
Collapse
|
21
|
Yang H, Sun HR, Xue RD, Wu ZB, Gou BB, Lei Y, Chen J, Zhou L. Selectfluor-Mediated Stereoselective [1 + 1 + 4 + 4] Dimerization of Styrylnaphthols. Org Lett 2019; 21:9829-9835. [PMID: 31820653 DOI: 10.1021/acs.orglett.9b03587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereoselective [1 + 1 + 4 + 4] dimerization of 1-styrylnaphthols has been developed by using Selectfluor as the oxidant for the first time. The reaction was compatible with various functional groups, giving a class of ethanodinaphtho[b,f][1,5]dioxocines with novel 3D skeletons. DFT calculations indicate that this method merges an intriguing stereoselective intermolecular 1 + 1 radical coupling to construct a bridged C-C bond and then an intramolecular [4 + 4] formal cycloaddition of the in situ generated o-quinone methide intermediate.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Huai-Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Rui-Di Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Zi-Bo Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Bo-Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an 710127 , P.R. China
| |
Collapse
|
22
|
Hinkle RJ, Speer DJ, Carnell BB, Kanter BL, Pike RD. Mild, Modular, and Convergent Synthesis of Helical Naphtho[2,1- c]chromenes via a Multistep Cyclization/Aromatization Cascade Sequence. J Org Chem 2019; 84:15633-15641. [PMID: 31684728 DOI: 10.1021/acs.joc.9b02058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tetracyclic 6H-naphtho[2,1-c]chromenes are expeditiously synthesized through a BF3·OEt2-mediated, three-step cascade reaction, creating new central pyran and aromatic rings. The cascade involves the addition of phenol-derived alkynyl substrates to BF3-activated aldehydes followed by alkyne-Prins cyclization, Friedel-Crafts reaction, and final elimination. Aliphatic and electron-deficient aromatic aldehydes afford the products in 50-74% isolated yields, but benzaldehyde and tolualdehyde resulted in lower yields. X-ray analysis of a p-bromophenyl derivative (5aA) shows the two aromatic moieties are twisted by 28° to create a helical backbone.
Collapse
Affiliation(s)
- Robert J Hinkle
- Department of Chemistry , William & Mary , P.O. Box 8795, Williamsburg , Virginia 23187-8795 , United States
| | - Daniel J Speer
- Department of Chemistry , William & Mary , P.O. Box 8795, Williamsburg , Virginia 23187-8795 , United States
| | - Brendon B Carnell
- Department of Chemistry , William & Mary , P.O. Box 8795, Williamsburg , Virginia 23187-8795 , United States
| | - Bethany L Kanter
- Department of Chemistry , William & Mary , P.O. Box 8795, Williamsburg , Virginia 23187-8795 , United States
| | - Robert D Pike
- Department of Chemistry , William & Mary , P.O. Box 8795, Williamsburg , Virginia 23187-8795 , United States
| |
Collapse
|
23
|
He X, Xie M, Tang Q, Zuo Y, Li R, Shang Y. Catalyst-Free Synthesis of 2,3-Dihydrobenzofurans via a Formal [4+1] Annulation of Propargylamines with Sulfur Ylides. J Org Chem 2019; 84:11623-11638. [DOI: 10.1021/acs.joc.9b01557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| |
Collapse
|
24
|
Assoah B, Riihonen V, Vale JR, Valkonen A, Candeias NR. Synthesis of 6,12-Disubstituted Methanodibenzo[b,f][1,5]dioxocins: Pyrrolidine Catalyzed Self-Condensation of 2′-Hydroxyacetophenones. Molecules 2019; 24:molecules24132405. [PMID: 31261870 PMCID: PMC6651863 DOI: 10.3390/molecules24132405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/17/2022] Open
Abstract
The preparation of unprecedented 6,12-disubstituted methanodibenzo[b,f][1,5]dioxocins from pyrrolidine catalyzed self-condensation of 2′-hydroxyacetophenones is herein described. This method provides easy access to this highly bridged complex core, resulting in construction of two C–O and two C–C bonds, a methylene bridge and two quaternary centers in a single step. The intricate methanodibenzo[b,f][1,5]dioxocin compounds were obtained in up to moderate yields after optimization of the reaction conditions concerning solvent, reaction times and the use of additives. Several halide substituted methanodibenzo[b,f][1,5]dioxocins could be prepared from correspondent 2′-hydroxyacetophenones.
Collapse
Affiliation(s)
- Benedicta Assoah
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| | - Vesa Riihonen
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - João R Vale
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Arto Valkonen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Nuno R Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland.
| |
Collapse
|
25
|
Wu M, Yang J, Luo F, Cheng C, Zhu G. Iron-catalyzed domino Knoevenagel-hetero-Diels-Alder reaction: facile access to oxabicyclo[3.3.1]nonene derivatives. Org Biomol Chem 2019; 17:5684-5687. [PMID: 31134253 DOI: 10.1039/c9ob00836e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A Fe-catalyzed domino Knoevenagel-hetero-Diels-Alder reaction of alkenyl aldehydes and 1,3-diketones has been developed. It provides straightforward access to a series of oxabicyclo[3.3.1]nonene derivatives in promising yields with excellent diastereoselectivity and functional group tolerance. The resultant bridged dihydropyrans can be smoothly converted into chromene derivatives, thus highlighting the synthetic utility of this method.
Collapse
Affiliation(s)
- Mingchang Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Hongwei Qian
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Yicheng Bi
- Qingdao University of Science & TechnologySifang Campus 53 Zhengzhou Road Qingdao Shandong 266042 People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| |
Collapse
|
27
|
Bakthadoss M, Jayakumar S, Raman S, Devaraj A, Sharada DS. A novel multicomponent quadruple/double quadruple domino reaction: highly efficient synthesis of polyheterocyclic architectures. Org Biomol Chem 2019; 17:3884-3893. [PMID: 30574986 DOI: 10.1039/c8ob02970a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel multicomponent quadruple domino reaction (MCQDR) for the assembly of structurally complex molecular architectures via the formation of three rings and three contiguous stereogenic centers has been accomplished with high regio- and diastereoselectivity. Solvents, catalysts and work-up were not required to obtain the target molecules. In addition, this new protocol is also extended for the multicomponent double quadruple domino reaction (MCDQDR) to create novel polyheterocyclic architectures in an orthogonal manner.
Collapse
Affiliation(s)
- Manickam Bakthadoss
- Department of Chemistry, Pondicherry University, Puducherry - 605 014, India.
| | | | | | | | | |
Collapse
|
28
|
He X, Wang H, Cai X, Li Q, Tao J, Shang Y. FeCl 3-promoted tandem 1,4-conjugate addition/6-endo-dig cyclization/oxidation of propargylamines and benzoylacetonitriles/malononitriles: direct access to functionalized 2-aryl-4H-chromenes. Org Biomol Chem 2019; 16:7191-7202. [PMID: 30255179 DOI: 10.1039/c8ob01927d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient and concise procedure has been developed for the synthesis of functionalized 2-aryl-4H-chromenes based on a tandem reaction of propargylamines and benzoylacetonitriles/malononitriles in the presence of FeCl3 as an environmentally friendly promoter. This reaction involves a highly efficient tandem sequence consisting of 1,4-conjugate addition, 6-endo-dig cyclization, and oxidation. This protocol tolerates a variety of functional groups, thereby providing a practical and efficient method for the fabrication of 2-aryl-4H-chromene skeletons.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | | | | | | | | | | |
Collapse
|
29
|
Li Q, He X, Tao J, Xie M, Wang H, Li R, Shang Y. Base‐mediated 1,4‐Conjugate Addition/Intramolecular 5‐
exo‐dig
Annulation of Propargylamines with Benzoylacetonitriles and
β
‐Keto Esters for Polysubstituted Furans and Furo[3,4‐
c
]coumarins Formation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qianqian Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Jiajia Tao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Hui Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241000 People's Republic of China
| |
Collapse
|
30
|
Du JY, Ma YH, Meng FX, Zhang RR, Wang RN, Shi HL, Wang Q, Fan YX, Huang HL, Cui JC, Ma CL. Lewis Base-Catalyzed [4 + 3] Annulation of ortho-Quinone Methides and MBH Carbonates: Synthesis of Functionalized Benzo[b]oxepines Bearing Oxindole Scaffolds. Org Lett 2019; 21:465-468. [DOI: 10.1021/acs.orglett.8b03709] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yan-Hua Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Fan-Xiao Meng
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Rui-Rui Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ruo-Nan Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hong-Liang Shi
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qi Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ya-Xin Fan
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Ji-Chun Cui
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Chun-Lin Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| |
Collapse
|
31
|
Chang MY, Chen HY, Tsai YL. Intramolecular Benzannulation of 3-Sulfonyl-2-benzylchromen-4-ones: Synthesis of Sulfonyl Dibenzooxabicyclo[3.3.1]nonanes. J Org Chem 2019; 84:443-449. [PMID: 30547592 DOI: 10.1021/acs.joc.8b02726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this work, a concise route for the synthesis of sulfonyl dibenzo-oxabicyclo[3.3.1]nonanes by a two-step route is described, including (i) NaBH4/LiCl-mediated reduction of 3-sulfonyl-2-benzylchromen-4-ones and (ii) sequential BF3·OEt2-mediated intramolecular annulation of the resulting 3-sulfonyl-2-benzylchroman-4-ols. A plausible mechanism is proposed and discussed herein. This protocol provides a highly effective stereocontrolled aryl-hydroxyl Friedel-Crafts-type cross-coupling to construct the tetra- or pentacyclic bridged framework. The use of various reaction conditions is investigated for an efficient transformation.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan.,Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| | - Han-Yu Chen
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| | - Yu-Lin Tsai
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| |
Collapse
|
32
|
Chu MM, Qi SS, Ju WZ, Wang YF, Chen XY, Xu DQ, Xu ZY. Asymmetric organocatalytic conjugated addition of pyrazolin-5-ones to ortho-quinomethanes: construction of vicinal tertiary and all-carbon quaternary stereocenters. Org Chem Front 2019. [DOI: 10.1039/c9qo00011a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organocatalytic conjugated addition of pyrazolin-5-ones to ortho-quinomethanes was developed to construct the vicinal tertiary and all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Ming-Ming Chu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Suo-Suo Qi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Wan-Zhen Ju
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Yi-Feng Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Xue-Yang Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| | - Zhen-Yuan Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province
- Department of Green Chemistry and Technology
- Zhejiang University of Technology
- Hangzhou 310014
| |
Collapse
|
33
|
He X, Choy PY, Leung MP, Yuen OY, Liu T, Shang Y, Kwong FY. A ZnI2-catalyzed regioselective cascade 1,4-conjugate addition/5-exo-dig annulation pathway for one-pot access to heterobiaryl frameworks. Chem Commun (Camb) 2019; 55:15069-15072. [DOI: 10.1039/c9cc07054k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Facile access to π-extended heterobiaryl compounds via a non-cross-coupling strategy has been achieved.
Collapse
Affiliation(s)
- Xinwei He
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- P. R. China
- Key Laboratory of Functional Molecular Solids
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- P. R. China
| | - Man Pan Leung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- P. R. China
| | - On Ying Yuen
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- P. R. China
| | - Tianyi Liu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
| | - Fuk Yee Kwong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- P. R. China
| |
Collapse
|
34
|
Yan LQ, Cai X, He X, Wang H, Xie M, Zuo Y, Shang Y. Synthesis of 4-styrylcoumarins via FeCl3-promoted cascade reactions of propargylamines with β-keto esters. Org Biomol Chem 2019; 17:4005-4013. [DOI: 10.1039/c9ob00323a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A versatile and highly regioselective FeCl3-promoted tandem cyclization reaction of in situ generated alkynyl o-quinone methides (o-AQMs) with β-keto esters has been developed.
Collapse
Affiliation(s)
- Li-Qin Yan
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Xiaoting Cai
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Hui Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
35
|
Meng FX, Wang RN, Huang HL, Gong SW, Li QL, Zhang SL, Ma CL, Li CZ, Du JY. Lewis acid-catalyzed tandem cyclization of in situ generated o-quinone methides and arylsulfonyl hydrazides for a one-pot entry to 3-sulfonylbenzofurans. Org Chem Front 2019. [DOI: 10.1039/c9qo01196j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-mediated one-pot tandem cyclization of o-QMs with arylsulfonyl hydrazides was described for the first time and the corresponding 3-sulfonylbenzofuran products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Fan-Xiao Meng
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Ruo-Nan Wang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shu-Wen Gong
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Qian-Li Li
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shao-Liang Zhang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chun-Lin Ma
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory
- Department of Biomedical Engineering
- Florida International University
- Miami
- USA
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| |
Collapse
|
36
|
Synthesis of 4H-chromenes by silver (I)-catalyzed cycloaddition of ortho-quinone methides with N-allenamides. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9359-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|