1
|
Pan X, Dong B, Wu Y, Gao B, Song C. Synthesis of Functionalized 4-Hydroxy Carbazoles and Carbazole Alkaloids via Ring Expansion of Indole Cyclopentanone. J Org Chem 2024; 89:8845-8850. [PMID: 38814829 DOI: 10.1021/acs.joc.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The exploration of a ring expansion reaction from indole cyclopentanone to generate a range of diversely functionalized 4-hydroxyl carbazole frameworks, representing the core structure of numerous carbazole alkaloids, has been conducted under mild reaction conditions. This approach exhibits broad functional group tolerance and moderate to good yields. The practical applicability of this strategy has been demonstrated through the concise syntheses of carbazomycins A, D, and G.
Collapse
Affiliation(s)
- Xiaolong Pan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Boyang Dong
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yangang Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Beiling Gao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Chuanjun Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Zhu M, Zhu M, Wei F, Shao C, Li X, Liu B. Synthesis of Bridged Cycloisoxazoline Scaffolds via Rhodium-Catalyzed Coupling of Nitrones with Cyclic Carbonate. J Org Chem 2023; 88:16330-16339. [PMID: 37966420 DOI: 10.1021/acs.joc.3c01840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bridged isoxazolidines were synthesized via Rh(III)-catalyzed C-H allylation of α-aryl nitrones with 5-methylene-1,3-dioxan-2-one. The nitrone group serves as a directing group and 1,3-dipole in the C-H activation/[3 + 2] cycloaddition cascade, exhibiting excellent chemo- and stereoselectivity along with good functional group compatibility. The resulting skeletal structure was conveniently modified to produce a range of important chemical frameworks, and the protocol was applied to biologically active molecules.
Collapse
Affiliation(s)
- Man Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengdie Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fangjie Wei
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chongjing Shao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Aravindan N, Jeganmohan M. One-Pot Synthesis of Benzo[ c]phenanthridine Alkaloids from 7-Azabenzonorbornadienes and Aryl Nitrones. Org Lett 2023. [PMID: 37200493 DOI: 10.1021/acs.orglett.3c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An efficient synthesis of benzo[c]phenanthridine alkaloids via a synergistic combination of C-C bond formation and a cycloaromatization reaction is described. Aryl nitrones react with 7-azabenzonorbornadienes in the presence of a Rh(III) catalyst, providing pharmaceutically useful benzo[c]phenanthridine derivatives in good to moderate yields. Using this methodology, highly useful alkaloids such as norfagaronine, norchelerythrine, decarine, norsanguinarine, and nornitidine were prepared in a single step.
Collapse
Affiliation(s)
- Narasingan Aravindan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
4
|
Guo S, Zhang Z, Wei Z, Zhu Y, Fan X. Rh(III)-Catalyzed Spiroannulation Reaction of N-Aryl Nitrones with 2-Diazo-1,3-indandiones: Synthesis of Spirocyclic Indole- N-oxides and Their 1,3-Dipolar Cycloaddition with Maleimides. J Org Chem 2023; 88:3845-3858. [PMID: 36884277 DOI: 10.1021/acs.joc.3c00117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
An efficient strategy for the preparation of spirocyclic indole-N-oxide compounds through a Rh(III)-catalyzed [4 + 1] spiroannulation reaction of N-aryl nitrones with 2-diazo-1,3-indandiones as C1 synthons under extremely mild conditions is presented. From this reaction, 40 spirocyclic indole-N-oxides were easily obtained in up to 98% yield. In addition, the title compounds could be successfully used for the construction of structurally intriguing maleimide-containing fused polycyclic scaffolds via a diastereoselective 1,3-dipolar cycloaddition reaction with maleimides.
Collapse
Affiliation(s)
- Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhaotong Wei
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanqing Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
5
|
Brześkiewicz J, Loska R. Synthesis of Isoindole N-Oxides by Palladium-Catalyzed C-H Functionalization of Aldonitrones. J Org Chem 2023; 88:2385-2392. [PMID: 36704962 DOI: 10.1021/acs.joc.2c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A palladium-catalyzed strategy for isoindole N-oxide ring construction by C-H functionalization of aldonitrones is described. Our protocol is of general character, providing isoindole N-oxides with a variety of functional groups, including very sterically congested products. Further transformations into spirocyclic isoindolines, isoindoles, or a polycyclic isoquinolinium salt have been demonstrated as well. A mechanistic study suggests that the catalytic process proceeds via a Heck-type addition to the double C═N bond.
Collapse
Affiliation(s)
- Jakub Brześkiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
6
|
Moon J, Ko N, Jang S, Ghosh P, Kim HS, Mishra NK, Kim IS. Ruthenium(II)-Catalyzed Tandem C–H Allylation and [3 + 2] Dipolar Cycloaddition to Construct Bridged Tetracycles. Org Lett 2022; 24:8115-8119. [DOI: 10.1021/acs.orglett.2c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seoeun Jang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Wang TT, Zhao LM. Synthesis of 2-arylethenesulfonyl fluorides and isoindolinones: Ru-catalyzed C-H activation of nitrones with ethenesulfonyl fluoride. Chem Commun (Camb) 2022; 58:11099-11102. [PMID: 36098079 DOI: 10.1039/d2cc03418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy for the synthesis of 2-arylethenesulfonyl fluorides from nitrones and ethenesulfonyl fluoride (ESF) by the activation of the C-H bond using an inexpensive and readily available Ru-catalyst has been developed. In this process, the directing group can be concomitantly converted to an amide group. Interestingly, changing the substituent of the nitrogen of nitrones from a tert-butyl to a methyl group resulted in the formation of cyclic isoindolinones. Detailed mechanistic studies are also presented.
Collapse
Affiliation(s)
- Tong-Tong Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| |
Collapse
|
8
|
Zhu M, Zhang Y, Tian M, Li X, Liu B, Chang J. Regio- and stereo-selective construction of cis-indeno[1,2- c]isoxazoles via a C–H allylation/1,3-dipolar cycloaddition cascade. Org Chem Front 2022. [DOI: 10.1039/d2qo01212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of fused cis-indole[1,2-c]isoxazoles with excellent regio- and stereo-selectivity via a rhodium-catalyzed C–H allylation/intramolecular 1,3-dipolar cycloaddition cascade has been realized.
Collapse
Affiliation(s)
- Man Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| | - Yanan Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| | - Miaomiao Tian
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
9
|
Jiang Z, Zhou J, Zhu H, Liu H, Zhou Y. Rh(III)-Catalyzed [5 + 1] Annulation of Indole-enaminones with Diazo Compounds To Form Highly Functionalized Carbazoles. Org Lett 2021; 23:4406-4410. [PMID: 34018745 DOI: 10.1021/acs.orglett.1c01341] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel Rh(III)-catalyzed C-H activation/annulation cascade of indole-enaminones with diazo compounds was reported to construct diversely functionalized carbazole frameworks. The most notable characteristic is that this transformation could smoothly furnish a novel [5 + 1] cyclization product with good to excellent yields (up to 95%), accompanied by the thorough removal of acetyl and N,N-dimethyl groups of two substrates from the target products, rather than the normally expected [4 + 2] cyclization products.
Collapse
Affiliation(s)
- Zhidong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haoran Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Brześkiewicz J, Stańska B, Dąbrowski P, Loska R. C−H Activation and Cross‐Coupling of Acyclic Aldonitrone. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jakub Brześkiewicz
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Barbara Stańska
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Piotr Dąbrowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Rafał Loska
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
11
|
Zou N, Qin X, Wang Z, Shi W, Mo D. Advances on the Synthesis and Application of α,β-Unsaturated Nitrones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Banerjee A, Kundu S, Bhattacharyya A, Sahu S, Maji MS. Benzannulation strategies for the synthesis of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines. Org Chem Front 2021. [DOI: 10.1039/d1qo00092f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents a critical and authoritative analysis of several exciting benzannulation approaches developed in the past decade for the construction of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines.
Collapse
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Kundu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Arya Bhattacharyya
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Sahu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Modhu Sudan Maji
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
13
|
Liu H, Yan Y, Zhang J, Liu M, Cheng S, Wang Z, Zhang X. Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines. Chem Commun (Camb) 2020; 56:13591-13594. [DOI: 10.1039/d0cc05807f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines provided various (bridged) isoxazolines fused dihydrobenzofurans with moderate to good yields in moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Hui Liu
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Yingkun Yan
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Jiayan Zhang
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Min Liu
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Shaobing Cheng
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| | - Zhouyu Wang
- Department of Chemistry
- Xihua University
- China
| | - Xiaomei Zhang
- Department of Chemistry
- Xihua University
- China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
| |
Collapse
|
14
|
Han F, Xun S, Jia L, Zhang Y, Zou L, Hu X. Traceless-Activation Strategy for Rh-Catalyzed Csp2–H Arylation of Coumarins. Org Lett 2019; 21:5907-5911. [DOI: 10.1021/acs.orglett.9b02040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fuzhong Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Xun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Lina Jia
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yutong Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Liwei Zou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
15
|
Allylic Acetals as Acrolein Oxonium Precursors in Tandem C−H Allylation and [3+2] Dipolar Cycloaddition. Angew Chem Int Ed Engl 2019; 58:9470-9474. [DOI: 10.1002/anie.201903983] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/27/2019] [Indexed: 12/19/2022]
|
16
|
Lee H, Kang D, Han SH, Chun R, Pandey AK, Mishra NK, Hong S, Kim IS. Allylic Acetals as Acrolein Oxonium Precursors in Tandem C−H Allylation and [3+2] Dipolar Cycloaddition. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heeyoung Lee
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | - Dahye Kang
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sang Hoon Han
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | - Rina Chun
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | | | | | - Sungwoo Hong
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - In Su Kim
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
17
|
Guo L, Tang B, Nie R, Liu Y, Lv S, Wang H, Guo L, Hai L, Wu Y. C–H alkenylation/cyclization and sulfamidation of 2-phenylisatogens using N-oxide as a directing group. Chem Commun (Camb) 2019; 55:10623-10626. [PMID: 31429452 DOI: 10.1039/c9cc05719f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ru(ii)-Catalyzed C–H alkenylation/cyclization and Ir(iii)-catalyzed C–H sulfamidation provided indol-3-one derivatives and sulfamidated 2-phenylisatogens respectively, with good yields and excellent functional group tolerance.
Collapse
Affiliation(s)
- Lingmei Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Baolan Tang
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Ruifang Nie
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yanzhao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Shan Lv
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Huijing Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California San Diego
- La Jolla
- USA
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Li Hai
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Yong Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry
- Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
18
|
Biphenyl 3- and 4- mono and 4, 4′-dicarbaldehyde as Electrophiles and Unusual Michael Acceptors in the Baylis-Hillman Reaction: Synthesis of Functionalized Biphenyl Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201802770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Han SH, Pandey AK, Lee H, Kim S, Kang D, Jung YH, Kim HS, Hong S, Kim IS. One-pot synthesis of 2-naphthols from nitrones and MBH adducts via decarboxylative N–O bond cleavage. Org Chem Front 2018; 5:3210-3218. [DOI: 10.1039/c8qo00988k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The unprecedented one-pot synthesis of 2-naphthols through an acid-mediated decarboxylative N–O bond cleavage of bridged benzoxazepine intermediates is described.
Collapse
Affiliation(s)
- Sang Hoon Han
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | | | - Heeyoung Lee
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Saegun Kim
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Dahye Kang
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations
- Institute for Basic Science (IBS)
- Daejeon 34141
- Republic of Korea
- Department of Chemistry
| | - In Su Kim
- School of Pharmacy
- Sungkyunkwan University
- Suwon 16419
- Republic of Korea
| |
Collapse
|