1
|
Lin J, Tian J, Lu Y, Xu Y, Chen L, Jiang Y, Guo M, Zhang X, Zhang C. Divergent Synthesis of Enynals and Dihydrobenzo[ f]isoquinolines via Deoxyalkynylation of Enaminones Enabled by the Cooperative Action of Tf 2O/Pd/Cu. J Org Chem 2024; 89:16419-16425. [PMID: 39462843 DOI: 10.1021/acs.joc.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A variety of enynals and dihydrobenzo[f]isoquinolines were effectively synthesized with favorable functional group compatibility via deoxyalkynylation of enaminones enabled by the cooperative action of Tf2O/Pd/Cu. The reaction system demonstrated the ability to be expanded to the deoxyarylation/deoxyaryloxylation of enaminones with arylboronic acids or phenols, facilitating the efficient formation of C-C/C-O bonds and showcasing the practicality and versatility of the methodology.
Collapse
Affiliation(s)
- Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jiakai Tian
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yu Lu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yiming Xu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yucai Jiang
- Department of Pharmacy, Affiliated Hospital of Putian University, Putian 35110, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Xiaohan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| |
Collapse
|
2
|
Liu C, Shangguan X, Li Y, Zhang Q. Copper-catalyzed radical cascade reaction of simple cyclobutanes: synthesis of highly functionalized cyclobutene derivatives. Chem Sci 2022; 13:7886-7891. [PMID: 35865909 PMCID: PMC9258397 DOI: 10.1039/d2sc00765g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Cyclobutenes as versatile and highly valuable synthons have been widely applied in synthesis. Although various methods for their synthesis have been well established, new strategies for the construction of the cyclobutene skeleton from simple substrates are still highly desirable. Starting from simple cyclobutanes, the construction of the cyclobutene skeleton especially introducing multiple functional groups simultaneously had never been achieved. Here, we developed a novel radical cascade strategy for the synthesis of highly functionalized cyclobutenes directly from cyclobutanes involving rare cleavage of four or five C–H bonds and formation of two C–N/C–S or three C–Br bonds. With copper as catalyst and N-fluorobenzenesulfonimide (NFSI) as oxidant, a wide range of diaminated, disulfonylated and tribrominated cyclobutene derivatives were efficiently synthesized. A novel radical cascade strategy for the synthesis of highly functionalized cyclobutenes directly from cyclobutanes involving rare four or five C–H bonds cleavage and two C–N/C–S or three C–Br bonds formation has been successfully developed.![]()
Collapse
Affiliation(s)
- Chunyang Liu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xiaoyan Shangguan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Yan Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
3
|
Novel capto-dative (Z,E)-2-(alkylthio)alk-2-en-4-ynals: synthesis and heterocyclization. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Golling S, Leroux FR, Donnard M. Versatile Access to Tetrasubstituted 2-Amidoacroleins through Formal Silylformylation of Ynamides. Org Lett 2021; 23:8093-8097. [PMID: 34612044 DOI: 10.1021/acs.orglett.1c03141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this paper we are reporting the first regio- and stereoselective silylformylation of ynamides. This reaction is tolerant to a wide range of functional groups around the ynamides. The substitution of CO by an isocyanide makes this reaction safer and more practical than standard silylformylation reactions. It overall represents a versatile and rapid access to various tetrasubstituted 3-silyl-2-amidoacrolein derivatives. The synthetic potential of these new building blocks has been evaluated by performing several postfunctionalization.
Collapse
Affiliation(s)
- Stéphane Golling
- Université de Strasbourg, CNRS, Université de Haute-Alsace (LIMA UMR 7042), École Européenne de Chimie, Polymères et Matériaux (ECPM), F-67000 Strasbourg, France
| | - Frédéric R Leroux
- Université de Strasbourg, CNRS, Université de Haute-Alsace (LIMA UMR 7042), École Européenne de Chimie, Polymères et Matériaux (ECPM), F-67000 Strasbourg, France
| | - Morgan Donnard
- Université de Strasbourg, CNRS, Université de Haute-Alsace (LIMA UMR 7042), École Européenne de Chimie, Polymères et Matériaux (ECPM), F-67000 Strasbourg, France
| |
Collapse
|
5
|
|
6
|
Muñoz-Molina JM, Belderrain TR, Pérez PJ. Copper-catalysed radical reactions of alkenes, alkynes and cyclopropanes with N-F reagents. Org Biomol Chem 2020; 18:8757-8770. [PMID: 33089850 DOI: 10.1039/d0ob01743d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mild generation of nitrogen-centred radicals from N-F reagents has become a convenient synthetic tool. This methodology provides access to the aminative difunctionalisation of alkenes and alkynes and the radical ring-opening of cyclopropanes, among other similar transformations. This review article aims to provide an overview of recent developments of such processes involving radical reactions and N-F reagents using copper-based catalysts.
Collapse
Affiliation(s)
- José María Muñoz-Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| | - Tomás R Belderrain
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Carmen s/n, 21007-Huelva, Spain.
| |
Collapse
|
7
|
Sushmita, Aggarwal T, Kumar S, Verma AK. Exploring the behavior of the NFSI reagent as a nitrogen source. Org Biomol Chem 2020; 18:7056-7073. [PMID: 32909593 DOI: 10.1039/d0ob01429j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The diverse biological activities of nitrogen-containing compounds make the construction of the C-N bond of great importance. As N-fluorobenzenesulfonimide, one of the most abundant chemical feedstock, has a dual behaviour, i.e. as an electrophilic fluorination and amidation source, it attracts the attention of synthetic chemists for exploitation. This review comprehensively summarizes the significant progress of the efficient and mild amidation reactions, with an emphasis on approaches for the generation of nitrogen-centered intermediates, related mechanisms and new synthetic chemistry methods that offer opportunities to overcome obstacles in pharmaceutical applications. In this perspective, we discuss the developments in the amidation reaction using NFSI in the past decade. We discuss the recent progress, challenges and future outcomes in the area of amidation chemistry using commercially available NFSI.
Collapse
Affiliation(s)
- Sushmita
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Trapti Aggarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sonu Kumar
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
8
|
Zhao Q, Hao WJ, Shi HN, Xu T, Tu SJ, Jiang B. Photocatalytic Annulation–Alkynyl Migration Strategy for Multiple Functionalization of Dual Unactivated Alkenes. Org Lett 2019; 21:9784-9789. [DOI: 10.1021/acs.orglett.9b04018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hao-Nan Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting Xu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
9
|
|
10
|
Le Vaillant F, Waser J. Alkynylation of radicals: spotlight on the "Third Way" to transfer triple bonds. Chem Sci 2019; 10:8909-8923. [PMID: 31762975 PMCID: PMC6855197 DOI: 10.1039/c9sc03033f] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
The alkynylation of radical intermediates has been known since a long time, but had not been broadly applied in synthetic chemistry, in contrast to the alkynylation of either electrophiles or nucleophiles. In the last decade however, it has been intensively investigated leading to new disconnections to introduce versatile triple bonds into organic compounds. Nowadays, such processes are important alternatives to classical nucleophilic and electrophilic alkynylations. Efficient alkyne transfer reagents, in particular arylsulfones and hypervalent iodine reagents were introduced. Direct alkynylation, as well as cascade reactions, were subsequently developed. If relatively harsh conditions were required in the past, a new era began with progress in photoredox and transition metal catalysis. Starting from various radical precursors, alkynylations under very mild reaction conditions were rapidly discovered. This review covers the evolution of radical alkynylation, from its emergence to its current intensive stage of development. It will focus in particular on improvements for the generation of radicals and on the extension of the scope of radical precursors and alkyne sources.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSO , BCH 4306 , 1015 Lausanne , Switzerland .
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSO , BCH 4306 , 1015 Lausanne , Switzerland .
| |
Collapse
|
11
|
Wei W, Ying W, Meng X, Song S, Li Q. Copper‐Mediated Cascade Trifunctionalization of
N
‐Propargylamides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Wen‐Ting Wei
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Wei‐Wei Ying
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Xiao‐Xiao Meng
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Si‐Zhe Song
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials School of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| |
Collapse
|
12
|
Wei H, Guo Z, Liang X, Chen P, Liu H, Xing H. Selective Photooxidation of Amines and Sulfides Triggered by a Superoxide Radical Using a Novel Visible-Light-Responsive Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3016-3023. [PMID: 30629427 DOI: 10.1021/acsami.8b18206] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photocatalysis is an efficient and sustainable approach to convert solar energy into chemical energy, simultaneously supplying valuable chemicals. In this study, a novel metal-organic framework (MOF) compound is constructed from anthracene-based organic linkers, which shows visible-light absorption and efficient photoinduced charge generation property. It was applied for triggering photooxidation of benzylamines and sulfides in the presence of environmental benign oxidants of molecular oxygen or hydrogen peroxide. Results show that it is a highly selective photocatalyst for oxidation reactions to produce valuable imines or sulfoxides. We further investigate the underlying mechanism for these photocatalytic reactions by recognizing reactive oxygen species in the reactions. It has been demonstrated that the superoxide radical (O2•-), generated by electron transfer from a photoexcited MOF to oxidants, serves as the main active species for the oxidations. The work demonstrates the great potential of photoactive MOFs for the transformation of organic chemicals into valuable complexes.
Collapse
Affiliation(s)
- Hongxia Wei
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Zhifen Guo
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Xiao Liang
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Peiqi Chen
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Hui Liu
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry , Northeast Normal University , 5268 Renmin Street , Changchun 130024 , China
| |
Collapse
|