1
|
Li H, Yan S, Ma C, Zhang X, Fan X. Synthesis of CF 3-Azafluorenes through the Cascade Reaction of 2 H-Imidazoles with CF 3-Ynones. Org Lett 2024; 26:10310-10316. [PMID: 39585820 DOI: 10.1021/acs.orglett.4c03876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
A concise synthesis of trifluoromethyl (CF3)-substituted azafluorenes based on the reaction of 5-aryl-2H-imidazoles with CF3-ynones is reported. The reaction proceeds through C-H activation-initiated formal [3+2] cycloaddition to give spiro[imidazole-4,1'-indene] as a key intermediate, followed by its retro [3+2] cycloaddition, isomerization, and enamine nucleophilic addition. This synthesis of CF3-azafluorene derivatives via simultaneous formation of both the indene and the pyridine scaffolds through cascade C-H/C-C/C-N bond cleavage and C≡C bond formation has not been disclosed before. Moreover, the products thus obtained showed antiproliferative activity against cancer cell lines.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shengnan Yan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunhua Ma
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Das B, Bhattacharyya A, Paul B, Natarajan R, Majumdar S. An elegant approach for the synthesis of multisubstituted imidazole via FeCl 3/SiO 2 catalyzed activation of acetals: a photophysical study of an imidazole-carbazole hybrid. RSC Adv 2024; 14:33512-33523. [PMID: 39439828 PMCID: PMC11495403 DOI: 10.1039/d4ra06436d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
A simple and solvent-free catalytic system was developed for the direct conversion of multisubstituted imidazoles through the reaction of acetals and benzils with ammonium acetate/amines as the source of nitrogen. The reaction occurred under mild and benign conditions using FeCl3/SiO2 as a heterogeneous catalyst without the requirement of any toxic organic solvents. The easy preparation and recyclability of the catalyst allows the reaction to be simple and highly efficient, resulting in very good yields of imidazoles. Novel imidazole-carbazole hybrid compounds were also synthesised by adopting the present methodology. Single crystal X-ray diffraction study indicated the presence of a CH⋯π supramolecular interaction that renders effective molecular packing in the solid state. The steady-state and spectro-dynamic behaviours of these hybrid molecules were investigated, and it was revealed that a solvent-dependent excimer-coupled ICT phenomenon guided excited state photophysics. Very unusual excimer lifetime was noticed in the solid state of this bis-heterocyclic compound owing to the stacking of molecules via CH⋯π interaction, as evident from the X-ray studies.
Collapse
Affiliation(s)
- Barnali Das
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Arghyadeep Bhattacharyya
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| | - Bhaswati Paul
- CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700 032 India
| | - Ramalingam Natarajan
- CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700 032 India
| | - Swapan Majumdar
- Department of Chemistry, Tripura University Suryamaninagar 799 022 India +91-381-2374802 +91-381-237-9070
| |
Collapse
|
3
|
Li S, Lv S, Yang Y, Zhu P, Zhao D, Zeng MH. Mechanistic insights into an NH 4OAc-promoted imine dance in Rh-catalysed multicomponent double C-H annulations through an N-retention/exchange dual channel. Chem Sci 2023; 14:13446-13452. [PMID: 38033904 PMCID: PMC10686027 DOI: 10.1039/d3sc03861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Developing new and understanding multicomponent reactions (MCRs) is an appealing but challenging task. Herein, Rh(iii)-catalyzed multicomponent double C-H annulations of cyclic diimines (or diketones and acetone), alkynes, and ammonium acetate to assemble functionalized 1,1'-biisoquinolines and C-bridged 1,1'-bisisoquinolines with controllable 14N/15N editing in one shot has been developed. Through a combination of isotopic-labeling (2H, 18O, and 15N) experiments, crystallography, and time-dependent ESI-MS, the reaction process was studied in detail. Ammonium acetate accounts for two rounds of Hofmann elimination and iminization, thus leading to an unprecedented imine dance, cyclic imine → N-alkenyl imine → NH imine. The N-alkenyl imine can immediately guide a C-H annulation (N-retention channel), and some of it is converted into NH-imine to trigger another annulation (N-exchange channel). The channels and 15N ratios can be regulated by the reaction mode and acidity. Moreover, the resulting 1,1'-biisoquinolines are a privileged ligand scaffold which is exemplified herein by a hydrazine-iodine exchange reaction to form drug-like benzo[c]cinnolines.
Collapse
Affiliation(s)
- Shiqing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Shihai Lv
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Yanyan Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Peiyan Zhu
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Ming-Hua Zeng
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University 15 Yu Cai Road Guilin 541004 China
| |
Collapse
|
4
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Luo Y, Zhou HY, Gang YC, Dong L. Formation of Fluorovinyl Spiro-[imidazole-indene] and α-Amino-β-naphthalenones via Rh(III)-Catalyzed Cascade C-H Functionalization. Org Lett 2022; 24:6940-6944. [PMID: 36129217 DOI: 10.1021/acs.orglett.2c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficacious method for building fluorovinyl spiro-[imidazole-indene] and α-amino-β-naphthalenone skeletons synchronously has been shown to consist of Rh(III)-catalyzed C-H functionalization between 2H-imidazoles and difluoromethylene alkynes. This protocol demonstrates a practical and straightforward route for installing fluorine elements in the envisioned position of heterocyclic compounds.
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Han-Yi Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi-Chi Gang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
He Y, Zheng J, Dong L. Rh(III)-Catalyzed Cascade Annulation to Produce N-acetyl Chain of Spiropyrroloisoquinoline Derivatives. Org Biomol Chem 2022; 20:2293-2299. [PMID: 35234789 DOI: 10.1039/d2ob00137c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new rhodium(III)-catalyzed three-component multistep cascade spirocyclization approach was developed to synthesize nolvel N-acetyl chain of spiropyrroloisoquinoline derivatives using oxadiazoles as the directing group. This one-pot reaction also isolates aryloxadiazole...
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Fu Z, Cao X, Yin J, Gou Z, Yi X, Cai H. ortho-C—H Bond Functionalization of Carboxylic Acid Using Carboxyl as a Traceless Directing Group Based on the Strategy of “Two Birds with One Stone”. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202106024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wu W, Fan S, Li T, Fang L, Chu B, Zhu J. Cobalt-Catalyzed, Directed Intermolecular C-H Bond Functionalization for Multiheteroatom Heterocycle Synthesis: The Case of Benzotriazine. Org Lett 2021; 23:5652-5657. [PMID: 34259531 DOI: 10.1021/acs.orglett.1c01741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition-metal-catalyzed, directed intermolecular C-H bond functionalization is synthetically useful but heavily underexplored in multiheteroatom heterocycle synthesis. Herein we report a cobalt catalytic method for the formation of a three-nitrogen-bearing benzotriazine scaffold via the coupling of arylhydrazine and oxadiazolone. This synthetic protocol features a low-cost base metal catalyst, a maximum number of heteroatoms built into a heterocycle, a distinct synthetic logic for benzotriazines, a superior step economy, and a broad substrate scope.
Collapse
Affiliation(s)
- Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Tielei Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Benfa Chu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
He Y, Zheng T, Huang YH, Dong L. Rh(III)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Org Biomol Chem 2021; 19:4937-4942. [PMID: 33983356 DOI: 10.1039/d1ob00507c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(iii)-catalyzed olefination reaction of oxazoles to generate diverse oxazole skeleton derivatives has been realized by directly using oxazole as the directing group. The reaction could tolerate many functional groups, affording complex oxazole derivatives with long chain alkenyls in moderate to good yields, which might find applications in the construction of diverse compounds.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ting Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Hui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Chen Y, Huang Z, Dai C, Yang S, Shi DQ, Zhao Y. Palladium-Catalyzed Isoquinoline Synthesis by Tandem C-H Allylation and Oxidative Cyclization of Benzylamines with Allyl Acetate. Org Lett 2021; 23:4209-4213. [PMID: 33999646 DOI: 10.1021/acs.orglett.1c01153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel approach to synthesize 3-methylisoquinolines via a one-pot, two-step, palladium(II)-catalyzed tandem C-H allylation/intermolecular amination and aromatization is reported. A wide series of 3-methylisoquinoline derivatives were obtained directly using this method in moderate to good yields, and we highlight the synthetic importance of this new transformation.
Collapse
Affiliation(s)
- Yujie Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chenyang Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R.China
| |
Collapse
|
11
|
Zhong S, Deng GJ, Dai Z, Huang H. Visible-light-induced 4CzIPN/LiBr system: a tireless electron shuttle to enable reductive deoxygenation of N-heteroaryl carbonyls. Org Chem Front 2021. [DOI: 10.1039/d1qo00634g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A mild visible-light-induced photoredox system was found to be a tireless electron shuttle to enable reductive deoxygenation of N-heteroaryl carbonyls.
Collapse
Affiliation(s)
- Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Zhiqi Dai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
12
|
Luo Y, Pu WY, Xu YJ, Dong L. Formation of diversified spiro-[imidazole-indene] derivatives from 2H-imidazoles: based on versatile propargyl alcohols. Org Chem Front 2021. [DOI: 10.1039/d1qo00629k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rh(iii)-Catalyzed efficient cascade annulation for the regioselective construction of various spiro-[imidazole-indene] derivatives has been reported by utilizing versatile propargyl alcohols as coupling partners.
Collapse
Affiliation(s)
- Yi Luo
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
| | - Wei-Yi Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yan-Jun Xu
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
13
|
Luo Y, Liu H, Zhang J, Liu M, Dong L. Rh(III)-Catalyzed [3 + 2] Spirocyclization of 2H-Imidazoles with 1,3-Diynes for the Synthesis of Spiro-[imidazole-indene] Derivatives. Org Lett 2020; 22:7604-7608. [PMID: 32966081 DOI: 10.1021/acs.orglett.0c02805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Song Z, Yang Z, Wang P, Shi Z, Li T, Cui X. Ruthenium(II)-Catalyzed Regioselective [3 + 2] Spiroannulation of 2 H-Imidazoles with 2-Alkynoates. Org Lett 2020; 22:6272-6276. [PMID: 32806131 DOI: 10.1021/acs.orglett.0c02024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C═N double bond of 2H-imidazole has been employed as a C-electrophile for the ruthenium(II)-catalyzed [3 + 2] spiroannulation reaction of 4-phenyl-2H-imidazoles and 2-alkynoates to synthesize spiroimidazole-4,1'-indenes. This strategy features high regioselectivity, broad functional group tolerance, and use of ruthenium as a catalyst, providing a new method to synthesize spirocycles with potential applications in pharmaceuticals.
Collapse
Affiliation(s)
- Zhenyu Song
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Pu Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Zhaojiang Shi
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Tingfang Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P.R. China
| |
Collapse
|
15
|
Zhou Y, Liang H, Sheng Y, Wang S, Gao Y, Zhan L, Zheng Z, Yang M, Liang G, Zhou J, Deng J, Song Z. Ruthenium(II)-Catalyzed C-H Activation of Chromones with Maleimides to Synthesize Succinimide/Maleimide-Containing Chromones. J Org Chem 2020; 85:9230-9243. [PMID: 32578431 DOI: 10.1021/acs.joc.0c01223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An efficient route for the coupling of maleimides with chromones at the C5-position has been developed under Ru(II) catalysis. It could provide 1,4-addition products and oxidative Heck-type products by switching additives. Benzoic acid led to the formation of 1,4-addition products under solvent-free conditions, and silver acetate was promoted to the generation of oxidative Heck-type products. Various maleimides and chromones were suitable for this transformation, affording the desired products with good to excellent yields in a short reaction time. To understand the mechanism of this reaction, deuteration studies and control experiments have been performed.
Collapse
Affiliation(s)
- Yan Zhou
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Hong Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yaoguang Sheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Shaoli Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yi Gao
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhan
- The First Affiliated Hospital, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Zhilong Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Mengjie Yang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jianmin Zhou
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jun Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
16
|
Synthesis and Biological Evaluation of Diversified Hamigeran B Analogs as Neuroinflammatory Inhibitors and Neurite Outgrowth Stimulators. Mar Drugs 2020; 18:md18060306. [PMID: 32545418 PMCID: PMC7345552 DOI: 10.3390/md18060306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
We describe the efficient synthesis of a series of new simplified hamigeran B and 1-hydroxy-9-epi-hamigeran B norditerpenoid analogs (23 new members in all), structurally related to cyathane diterpenoid scaffold, and their anti-neuroinflammatory and neurite outgrowth-stimulating (neurotrophic) activity. Compounds 9a, 9h, 9o, and 9q exhibited moderate nerve growth factor (NGF)-mediated neurite-outgrowth promoting effects in PC-12 cells at the concentration of 20 μm. Compounds 9b, 9c, 9o, 9q, and 9t showed significant nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-activated BV-2 microglial cells, of which 9c and 9q were the most potent inhibitors, with IC50 values of 5.85 and 6.31 μm, respectively. Two derivatives 9q and 9o as bifunctional agents displayed good activities as NO production inhibitors and neurite outgrowth-inducers. Cytotoxicity experiments, H2O2-induced oxidative injury assay, and ELISA reaction speculated that compounds may inhibit the TNF-α pathway to achieve anti-inflammatory effects on nerve cells. Moreover, molecular docking studies provided a better understanding of the key structural features affecting the anti-neuroinflammatory activity and displayed significant binding interactions of some derivatives (like 9c, 9q) with the active site of iNOS protein. The structure-activity relationships (SARs) were also discussed. These results demonstrated that this structural class compounds offered an opportunity for the development of a new class of NO inhibitors and NGF-like promotors.
Collapse
|
17
|
Li C, Xu HB, Zhang J, Liu M, Dong L. Synthesis of rhodium(iii)-catalyzed isoquinoline derivatives from allyl carbonates and benzimidates with hydrogen evolution. Org Biomol Chem 2020; 18:1412-1416. [PMID: 32016247 DOI: 10.1039/c9ob02553g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel Rh(iii)-catalyzed cascade C-H activation/cyclization approach to access isoquinoline derivatives from benzimidates and available allyl carbonates with the liberation of H2 has been realized. Allyl carbonates were first used as a versatile and universal C2 synthon to synthesize this biological activity skeleton via an efficient and practical process just within 1 h.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Man Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen-Containing Polyaromatics by Aza-Annulative π-Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020; 59:6383-6388. [PMID: 32011794 DOI: 10.1002/anie.201913394] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/13/2020] [Indexed: 11/11/2022]
Abstract
Nitrogen-containing polycyclic aromatic compounds (N-PACs) are an important class of compounds in materials science. Reported here is a new aza-annulative π-extension (aza-APEX) reaction that allows rapid access to a range of N-PACs in 11-84 % yields from readily available unfunctionalized aromatics and imidoyl chlorides. In the presence of silver hexafluorophosphate, arenes and imidoyl chlorides couple in a regioselective fashion. The follow-up oxidative treatment with p-chloranil affords structurally diverse N-PACs, which are very difficult to synthesize. DFT calculations reveal that the aza-APEX reaction proceeds through the formal [4+2] cycloaddition of an arene and an in situ generated diarylnitrilium salt, with sequential aromatizations having relatively low activation energies. Transformation of N-PACs into nitrogen-doped nanographenes and their photophysical properties are also described.
Collapse
Affiliation(s)
- Kou P Kawahara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Wataru Matsuoka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
19
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen‐Containing Polyaromatics by Aza‐Annulative π‐Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kou P. Kawahara
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Wataru Matsuoka
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Hideto Ito
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
20
|
Zhou DG, Wang P. DFT investigation on the mechanisms of Csp 3–H functionalization of glycine derivatives induced by radical cation salt. NEW J CHEM 2020. [DOI: 10.1039/c9nj03946e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanism of Csp3–H functionalization between ethyl 2-(p-tolylamino)acetate and phenylethylene initiated by tris(4-bromophenyl)aminium hexachloroantimonate was elaborated based on DFT calculations.
Collapse
Affiliation(s)
- Da-Gang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province Institute of Synthesis and Application of Functional Materials
- College of Chemistry and Chemical Engineering
- China West Normal University
- Shida Road 1#
- Nanchong 637002
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province Institute of Synthesis and Application of Functional Materials
- College of Chemistry and Chemical Engineering
- China West Normal University
- Shida Road 1#
- Nanchong 637002
| |
Collapse
|
21
|
Liu C, Wu S, Sun W, Meng H, Xing S, Zhu B. Rapid and Efficient Construction of Indolizino[3,4,5‐
ab
]isoindole Skeletons by a Rhodium‐Catalyzed Tandem Reaction. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesKey Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of Education (Tianjin Normal University)College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Shaonan Wu
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesKey Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of Education (Tianjin Normal University)College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesKey Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of Education (Tianjin Normal University)College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Haifang Meng
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesKey Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of Education (Tianjin Normal University)College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesKey Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of Education (Tianjin Normal University)College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional MoleculesKey Laboratory of Inorganic-Organic Hybrid Functional Material ChemistryMinistry of Education (Tianjin Normal University)College of ChemistryTianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
22
|
Gogula T, Zhang JQ, Zou HB. Rhodium(III)-Catalyzed Regioselective C(sp 2)-H Functionalization of 7-Arylpyrazolo[1,5- a]pyrimidines with Dioxazolones as Amidating Agents. Org Lett 2019; 21:5933-5937. [PMID: 31328523 DOI: 10.1021/acs.orglett.9b02059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rh(III)-catalyzed C-H functionalization of 7-arylpyrazolo[1,5-a]pyrimidines was developed wherein the pyrazolo[1,5-a]pyrimidine moiety is reported for the first time to direct the C-H bond activation. Various 7-arylpyrazolo[1,5-a]pyrimidines underwent smooth C-H amidation with alkyl-, aryl-, and heteroaryl-substituted dioxazolones to afford the products in moderate to good yields. Mechanistic studies suggest that a six-membered rhodacycle intermediate involving N1 might play a key role in the regioselective catalytic cycle.
Collapse
Affiliation(s)
- Thirupathi Gogula
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Jin-Quan Zhang
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Hong-Bin Zou
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , P. R. China
| |
Collapse
|
23
|
Wang J, Cai P, He Y, Liu Y, Zhong L, Ding S, Shang Y. Tuneable access to isoquinolines via a transition-metal-free C(sp3)–C(sp3) bond cleavage rearrangement reaction. Org Chem Front 2019. [DOI: 10.1039/c9qo00427k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel divergent synthesis of multi-substituted isoquinolines via C(sp3)–C(sp3) bond cleavage rearrangement reactions was realized.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Panyuan Cai
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yimiao He
- College of Chemistry and Materials
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- P. R. China
| | - Yuan Liu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ling Zhong
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|