1
|
Reyes Y, Larrey EK, Pathak R, Veisaga ML, Barbieri MA, Ward S, Kumar A, Sevilla MD, Adhikary A, Wnuk SF. Azido derivatives of sesquiterpene lactones: Synthesis, anticancer proliferation, and chemistry of nitrogen-centered radicals. RESULTS IN CHEMISTRY 2024; 9:101643. [PMID: 39498431 PMCID: PMC11533910 DOI: 10.1016/j.rechem.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Sesquiterpene lactones (SLs) such as parthenolide (PTL) and dehydroleucodine (DhL) selectively kill cancer cells without exerting normal tissue toxicity, potentially due to presence of α-methylene-γ-lactone (αMγL) fragment. We hypothesize that the addition of an azido group to the αMγL fragment of PTL or DhL further augments their anticancer properties as well as radiation sensitivity of cancer cells. Azido-SLs containing the azido group at the C14 methyl position of PTL (i.e., azido-melampomagnolide B, AzMMB) while preserving the mechanistically crucial exomethylene unit of αMγL fragment were also prepared. Sham-irradiated (i.e., unirradiated control) or irradiated human breast cancer cells (MCF7) were treated with different concentrations of azido-PTL (AzPTL) or azido-DhL (AzDhL) along with parental SLs. Proliferation rate of MCF7 cells were measured by MTT-assay, and their colony forming ability was determined by colony formation assay. Both AzPTL and AzDhL significantly suppress proliferation rate and colony forming ability of MCF-7 cells. AzPTL suppressed colony forming ability, not cellular proliferation, following irradiation to a greater extent than PTL at lower concentrations (5 and 10 μM). Electron spin resonance (ESR) studies were performed employing gamma-irradiated homogeneous supercooled aqueous solutions to investigate radical formation through addition of radiation-mediated prehydrated electrons to the azide group of AzPTL and AzDhL and to follow subsequent reactions of these radicals. In AzPTL, formation of a tertiary carbon-centered radical plausibly via a metastable aminyl radical was observed, whereas AzDhL produced both π-aminyl and α-azidoalkyl radicals. These radicals may contribute to the antitumor activities of AzPTL and AzDhL.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Enoch K. Larrey
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Maria L. Veisaga
- Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | - Manuel A. Barbieri
- Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | - Samuel Ward
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Michael D. Sevilla
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
2
|
Reyes Y, Adhikary A, Wnuk SF. Nitrogen-Centered Radicals Derived from Azidonucleosides. Molecules 2024; 29:2310. [PMID: 38792171 PMCID: PMC11124349 DOI: 10.3390/molecules29102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Azido-modified nucleosides have been extensively explored as substrates for click chemistry and the metabolic labeling of DNA and RNA. These compounds are also of interest as precursors for further synthetic elaboration and as therapeutic agents. This review discusses the chemistry of azidonucleosides related to the generation of nitrogen-centered radicals (NCRs) from the azido groups that are selectively inserted into the nucleoside frame along with the subsequent chemistry and biological implications of NCRs. For instance, the critical role of the sulfinylimine radical generated during inhibition of ribonucleotide reductases by 2'-azido-2'-deoxy pyrimidine nucleotides as well as the NCRs generated from azidonucleosides by radiation-produced (prehydrated and aqueous) electrons are discussed. Regio and stereoselectivity of incorporation of an azido group ("radical arm") into the frame of nucleoside and selective generation of NCRs under reductive conditions, which often produce the same radical species that are observed upon ionization events due to radiation and/or other oxidative conditions that are emphasized. NCRs generated from nucleoside-modified precursors other than azidonucleosides are also discussed but only with the direct relation to the same/similar NCRs derived from azidonucleosides.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA;
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
3
|
Reyes Y, Mebel A, Wnuk SF. 6-azido and 6-azidomethyl uracil nucleosides. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:453-471. [PMID: 37859415 DOI: 10.1080/15257770.2023.2271023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Azido nucleosides have been utilized for click reactions, metabolic incorporation into cellular DNA, and fluorescent imaging of live cells. Two classes of 6-azido modified uracil nucleosides; one with azido group directly attached to uracil ring and second with azido group attached via methylene linker are described. The 6-azido-2'-deoxyuridine (6-AdU) was prepared in 55% overall yield by lithiation-based regioselective C6-iodination of silyl protected 2'-deoxyuridine followed by treatment with sodium azide and deprotection with TBAF. Lithiation-based C6-alkylation of the protected uridine with methyl iodide followed by the oxidation of the 6-methyl product with selenium dioxide and the subsequent mesylation and azidation of the resulting 6-hydroxymethyl group gave after deprotection 6-azidomethyluridine (6-AmU) in 61% overall yield. Direct lithiation-based C6-hydroxymethylation followed by mesylation/azidation sequence and deprotection provided 6-AmU or 6-azidomethyl-2'-deoxyuridine (6-AmdU). Yields for the lithiation-based regioselective C6-iodination and alkylation were higher for uridine than 2'-deoxyuridine derivatives and they appear to be less dependent on the sugar protection group used. Strain promoted click reactions of 6-AdU and 6-AmdU with symmetrically fused cyclopropyl cyclooctyne (OCT) provided fluorescent triazoles. DFT-calculated dihedral angles and energy differences for the favored anti and syn conformation of 6-AdU and 6-AmdU versus their C5 azido counterparts are discussed.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Alexander Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Peng H, Vu S, Retes P, Ward S, Kumar A, Sevilla MD, Adhikary A, Greenberg MM. Photochemical and Single Electron Transfer Generation of 2'-Deoxycytidin- N4-yl Radical from Oxime Esters. J Org Chem 2023; 88:7381-7390. [PMID: 37220149 PMCID: PMC10308854 DOI: 10.1021/acs.joc.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A 2'-deoxycytidin-N4-yl radical (dC·), a strong oxidant that also abstracts hydrogen atoms from carbon-hydrogen bonds, is produced in a variety of DNA damaging processes. We describe here the independent generation of dC· from oxime esters under UV-irradiation or single electron transfer conditions. Support for this σ-type iminyl radical generation is provided by product studies carried out under aerobic and anaerobic conditions, as well as electron spin resonance (ESR) characterization of dC· in a homogeneous glassy solution at low temperature. Density functional theory (DFT) calculations also support fragmentation of the corresponding radical anions of oxime esters 2d and 2e to dC· and subsequent hydrogen atom abstraction from organic solvents. The corresponding 2'-deoxynucleotide triphosphate (dNTP) of isopropyl oxime ester 2c (5) is incorporated opposite 2'-deoxyadenosine and 2'-deoxyguanosine by a DNA polymerase with approximately equal efficiency. Photolysis experiments of DNA containing 2c support dC· generation and indicate that the radical produces tandem lesions when flanked on the 5'-side by 5'-d(GGT). These experiments suggest that oxime esters are reliable sources of nitrogen radicals in nucleic acids that will be useful mechanistic tools and possibly radiosensitizing agents when incorporated in DNA.
Collapse
Affiliation(s)
- Haihui Peng
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Son Vu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Parker Retes
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Samuel Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Anil Kumar
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Narayanan S J J, Tripathi D, Verma P, Adhikary A, Dutta AK. Secondary Electron Attachment-Induced Radiation Damage to Genetic Materials. ACS OMEGA 2023; 8:10669-10689. [PMID: 37008102 PMCID: PMC10061531 DOI: 10.1021/acsomega.2c06776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Reactions of radiation-produced secondary electrons (SEs) with biomacromolecules (e.g., DNA) are considered one of the primary causes of radiation-induced cell death. In this Review, we summarize the latest developments in the modeling of SE attachment-induced radiation damage. The initial attachment of electrons to genetic materials has traditionally been attributed to the temporary bound or resonance states. Recent studies have, however, indicated an alternative possibility with two steps. First, the dipole-bound states act as a doorway for electron capture. Subsequently, the electron gets transferred to the valence-bound state, in which the electron is localized on the nucleobase. The transfer from the dipole-bound to valence-bound state happens through a mixing of electronic and nuclear degrees of freedom. In the presence of aqueous media, the water-bound states act as the doorway state, which is similar to that of the presolvated electron. Electron transfer from the initial doorway state to the nucleobase-bound state in the presence of bulk aqueous media happens on an ultrafast time scale, and it can account for the decrease in DNA strand breaks in aqueous environments. Analyses of the theoretically obtained results along with experimental data have also been discussed.
Collapse
Affiliation(s)
- Jishnu Narayanan S J
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Divya Tripathi
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Pooja Verma
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Amitava Adhikary
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Achintya Kumar Dutta
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Falkiewicz K, Kozak W, Zdrowowicz M, Spisz P, Chomicz-Mańka L, Torchala M, Rak J. Why 6-Iodouridine Cannot Be Used as a Radiosensitizer of DNA Damage? Computational and Experimental Studies. J Phys Chem B 2023; 127:2565-2574. [PMID: 36893332 PMCID: PMC10041638 DOI: 10.1021/acs.jpcb.3c00548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Previous density functional theory (DFT) studies on 6-brominated pyrimidine nucleosides suggest that 6-iodo-2'-deoxyuridine (6IdU) should act as a better radiosensitizer than its 5-iodosubstituted 2'-deoxyuridine analogue. In this work, we show that 6IdU is unstable in an aqueous solution. Indeed, a complete disappearance of the 6IdU signal was observed during its isolation by reversed-phase high-performance liquid chromatography (RP-HPLC). As indicated by the thermodynamic characteristics for the SN1-type hydrolysis of 6IdU obtained at the CAM-B3LYP/DGDZVP++ level and the polarizable continuum model (PCM) of water, 6-iodouracil (6IU) was already released quantitatively at ambient temperatures. The simulation of the hydrolysis kinetics demonstrated that a thermodynamic equilibrium was reached within seconds for the title compound. To assess the reliability of the calculations carried out, we synthesized 6-iodouridine (6IUrd), which was, unlike 6IdU, sufficiently stable in an aqueous solution at room temperature. The activation barrier for the N-glycosidic bond dissociation in 6IUrd was estimated experimentally using an Arrhenius plot. The stabilities in water calculated for 6IdU, 6IUrd, and 5-iodo-2'-deoxyuridine (5IdU) could be explained by the electronic and steric effects of the 2'-hydroxy group present in the ribose moiety. Our studies highlight the issue of the hydrolytic stability of potentially radiosensitizing nucleotides which, besides having favorable dissociative electron attachment (DEA) characteristics, must be stable in water to have any practical application.
Collapse
Affiliation(s)
- Karina Falkiewicz
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Witold Kozak
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Zdrowowicz
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Paulina Spisz
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
- Laboratory of Intermolecular Interactions, Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Lidia Chomicz-Mańka
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mieczyslaw Torchala
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Department of Physical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Adjei D, Reyes Y, Kumar A, Ward S, Denisov SA, Alahmadi M, Sevilla MD, Wnuk SF, Mostafavi M, Adhikary A. Pathways of the Dissociative Electron Attachment Observed in 5- and 6-Azidomethyluracil Nucleosides: Nitrogen (N 2) Elimination vs Azide Anion (N 3-) Elimination. J Phys Chem B 2023; 127:1563-1571. [PMID: 36780335 PMCID: PMC9984991 DOI: 10.1021/acs.jpcb.2c08257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
5-Azidomethyl-2'-deoxyuridine (5-AmdU, 1) has been successfully employed for the metabolic labeling of DNA and fluorescent imaging of live cells. 5-AmdU also demonstrated significant radiosensitization in breast cancer cells via site-specific nitrogen-centered radical (π-aminyl (U-5-CH2-NH•), 2, and σ-iminyl (U-5-CH═N•), 3) formation. This work shows that these nitrogen-centered radicals are not formed via the reduction of the azido group in 6-azidomethyluridine (6-AmU, 4). Radical assignments were performed using electron spin resonance (ESR) in supercooled solutions, pulse radiolysis in aqueous solutions, and theoretical (DFT) calculations. Radiation-produced electron addition to 4 leads to the facile N3- loss, forming a stable neutral C-centered allylic radical (U-6-CH2•, 5) through dissociative electron attachment (DEA) via the transient negative ion, TNI (U-6-CH2-N3•-), in agreement with DFT calculations. In contrast, TNI (U-5-CH2-N3•-) of 1, via facile N2 loss (DEA) and protonation from the surrounding water, forms radical 2. Subsequently, 2 undergoes rapid H-atom abstraction from 1 and produces the metastable intermediate α-azidoalkyl radical (U-5-CH•-N3). U-5-CH•-N3 converts facilely to radical 3. N3- loss from U-6-CH2-N3•- is thermodynamically controlled, whereas N2 loss from U-5-CH2-N3•- is dictated by protonation from the surrounding waters and resonance conjugation of the azidomethyl side chain at C5 with the pyrimidine ring.
Collapse
Affiliation(s)
- Daniel Adjei
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| | - Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Anil Kumar
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Samuel Ward
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Sergey A. Denisov
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| | - Moaadh Alahmadi
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Michael D. Sevilla
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| | - Amitava Adhikary
- Department of Chemistry, 146 Library Drive, Oakland University, Rochester, Michigan 48309, USA
| |
Collapse
|
8
|
Müggenburg F, Müller S. Azide-modified Nucleosides as Versatile Tools for Bioorthogonal Labeling and Functionalization. CHEM REC 2022; 22:e202100322. [PMID: 35189013 DOI: 10.1002/tcr.202100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Azide-modified nucleosides are important building blocks for RNA and DNA functionalization by click chemistry based on azide-alkyne cycloaddition. This has put demand on synthetic chemistry to develop approaches for the preparation of azide-modified nucleoside derivatives. We review here the available methods for the synthesis of various nucleosides decorated with azido groups at the sugar residue or nucleobase, their incorporation into oligonucleotides and cellular RNAs, and their application in azide-alkyne cycloadditions for labelling and functionalization.
Collapse
Affiliation(s)
- Frederik Müggenburg
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
9
|
Ma J, Bahry T, Denisov SA, Adhikary A, Mostafavi M. Quasi-Free Electron-Mediated Radiation Sensitization by C5-Halopyrimidines. J Phys Chem A 2021; 125:7967-7975. [PMID: 34470211 PMCID: PMC8448956 DOI: 10.1021/acs.jpca.1c05974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substitution of the thymidine moiety in DNA by C5-substituted halogenated thymidine analogues causes significant augmentation of radiation damage in living cells. However, the molecular pathway involved in such radiosensitization process has not been clearly elucidated to date in solution at room temperature. So far, low-energy electrons (LEEs; 0-20 eV) under vacuum condition and solvated electrons (esol-) in solution are shown to produce the σ-type C5-centered pyrimidine base radical through dissociative electron attachment involving carbon-halogen bond breakage. Formation of this σ-type radical and its subsequent reactions are proposed to cause cellular radiosensitization. Here, we report time-resolved measurements at room temperature, showing that a radiation-produced quasi-free electron (eqf-) in solution promptly breaks the C5-halogen bond in halopyrimidines forming the σ-type C5 radical via an excited transient anion radical. These results demonstrate the importance of ultrafast reactions of eqf-, which are extremely important in chemistry, physics, and biology, including tumor radiochemotherapy.
Collapse
Affiliation(s)
- Jun Ma
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Teseer Bahry
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| | - Sergey A. Denisov
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, MI - 48309, United States
| | - Mehran Mostafavi
- Institut de Chimie Physique, UMR 8000 CNRS, Bât. 349, Université Paris-Saclay; 91405, Orsay, Cedex, France
| |
Collapse
|
10
|
Mudgal M, Dang TP, Sobczak AJ, Lumpuy DA, Dutta P, Ward S, Ward K, Alahmadi M, Kumar A, Sevilla MD, Wnuk SF, Adhikary A. Site of Azido Substitution in the Sugar Moiety of Azidopyrimidine Nucleosides Influences the Reactivity of Aminyl Radicals Formed by Dissociative Electron Attachment. J Phys Chem B 2020; 124:11357-11370. [PMID: 33270461 DOI: 10.1021/acs.jpcb.0c08201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, electron-induced site-specific formation of neutral π-type aminyl radicals (RNH·) and their reactions with pyrimidine nucleoside analogs azidolabeled at various positions in the sugar moiety, e.g., at 2'-, 3'-, 4'-, and 5'- sites along with a model compound 3-azido-1-propanol (3AZPrOH), were investigated. Electron paramagnetic resonance (EPR) studies confirmed the site and mechanism of RNH· formation via dissociative electron attachment-mediated loss of N2 and subsequent facile protonation from the solvent employing the 15N-labeled azido group, deuterations at specific sites in the sugar and base, and changing the solvent from H2O to D2O. Reactions of RNH· were investigated employing EPR by warming these samples from 77 K to ca. 170 K. RNH· at a primary carbon site (5'-azido-2',5'-dideoxyuridine, 3AZPrOH) facilely converted to a σ-type iminyl radical (R═N·) via a bimolecular H-atom abstraction forming an α-azidoalkyl radical. RNH· when at a secondary carbon site (e.g., 2'-azido-2'-deoxyuridine) underwent bimolecular electrophilic addition to the C5═C6 double bond of a proximate pyrimidine base. Finally, RNH· at tertiary alkyl carbon (4'-azidocytidine) underwent little reaction. These results show the influence of the stereochemical and electronic environment on RNH· reactivity and allow the selection of those azidonucleosides that would be most effective in augmenting cellular radiation damage.
Collapse
Affiliation(s)
- Mukesh Mudgal
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Thao P Dang
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Adam J Sobczak
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Daniel A Lumpuy
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Priya Dutta
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Samuel Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Katherine Ward
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Moaadh Alahmadi
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Anil Kumar
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| |
Collapse
|
11
|
Luxford TFM, Pshenichnyuk SA, Asfandiarov NL, Perečko T, Falk M, Kočišek J. 5-Nitro-2,4-Dichloropyrimidine as an Universal Model for Low-Energy Electron Processes Relevant for Radiosensitization. Int J Mol Sci 2020; 21:ijms21218173. [PMID: 33142925 PMCID: PMC7662275 DOI: 10.3390/ijms21218173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/18/2023] Open
Abstract
We report experimental results of low-energy electron interactions with.
Collapse
Affiliation(s)
- Thomas F. M. Luxford
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic;
| | - Stanislav A. Pshenichnyuk
- Institute of Molecule and Crystal Physics UFRC RAS, October Avenue 151, 450075 Ufa, Russia;
- Correspondence: (S.A.P.); (M.F.); (J.K.)
| | - Nail L. Asfandiarov
- Institute of Molecule and Crystal Physics UFRC RAS, October Avenue 151, 450075 Ufa, Russia;
| | - Tomáš Perečko
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic;
| | - Martin Falk
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic;
- Correspondence: (S.A.P.); (M.F.); (J.K.)
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic;
- Correspondence: (S.A.P.); (M.F.); (J.K.)
| |
Collapse
|
12
|
Shanmugasundaram M, Senthilvelan A, Kore AR. C-5 Substituted Pyrimidine Nucleotides/Nucleosides: Recent Progress in Synthesis, Functionalization, and Applications. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190809124310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemistry of C5 substituted pyrimidine nucleotide serves as a versatile molecular
biology probe for the incorporation of DNA/RNA that has been involved in various
molecular biology applications such as gene expression, chromosome, and mRNA
fluorescence in situ hybridization (FISH) experiment, mutation detection on arrays and
microarrays, in situ RT-PCR, and PCR. In addition to C5 substituted pyrimidine nucleotide,
C5 substituted pyrimidine nucleoside displays a broad spectrum of biological applications
such as antibacterial, antiviral and anticancer activities. This review focusses on
the recent development in the synthesis of aminoallyl pyrimidine nucleotide, aminopropargyl
pyrimidine nucleotide, fluorescent probes containing C5 substituted pyrimidine nucleotide,
2′-deoxycytidine nucleoside containing vinylsulfonamide and acrylamide modification,
C5 alkenyl, C5 alkynyl, and C5 aryl pyrimidine nucleosides through palladium-catalyzed reaction,
pyrimidine nucleoside containing triazole moiety through Click reaction, 5-isoxazol-3-yl-pyrimidine nucleoside,
C5 azide modified pyrimidine nucleoside, 2′-deoxycytidine nucleotide containing photocleavable moiety,
and uridine nucleoside containing germane and their biological applications are outlined.
Collapse
Affiliation(s)
- Muthian Shanmugasundaram
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| | - Annamalai Senthilvelan
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| | - Anilkumar R. Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| |
Collapse
|
13
|
Kumar A, Becker D, Adhikary A, Sevilla MD. Reaction of Electrons with DNA: Radiation Damage to Radiosensitization. Int J Mol Sci 2019; 20:E3998. [PMID: 31426385 PMCID: PMC6720166 DOI: 10.3390/ijms20163998] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023] Open
Abstract
This review article provides a concise overview of electron involvement in DNA radiation damage. The review begins with the various states of radiation-produced electrons: Secondary electrons (SE), low energy electrons (LEE), electrons at near zero kinetic energy in water (quasi-free electrons, (e-qf)) electrons in the process of solvation in water (presolvated electrons, e-pre), and fully solvated electrons (e-aq). A current summary of the structure of e-aq, and its reactions with DNA-model systems is presented. Theoretical works on reduction potentials of DNA-bases were found to be in agreement with experiments. This review points out the proposed role of LEE-induced frank DNA-strand breaks in ion-beam irradiated DNA. The final section presents radiation-produced electron-mediated site-specific formation of oxidative neutral aminyl radicals from azidonucleosides and the evidence of radiosensitization provided by these aminyl radicals in azidonucleoside-incorporated breast cancer cells.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - David Becker
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA
| | - Michael D Sevilla
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
14
|
Wen Z, Tuttle PR, Howlader AH, Vasilyeva A, Gonzalez L, Tangar A, Lei R, Laverde EE, Liu Y, Miksovska J, Wnuk SF. Fluorescent 5-Pyrimidine and 8-Purine Nucleosides Modified with an N-Unsubstituted 1,2,3-Triazol-4-yl Moiety. J Org Chem 2019; 84:3624-3631. [PMID: 30806513 DOI: 10.1021/acs.joc.8b03135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Cu(I)- or Ag(I)-catalyzed cycloaddition between 8-ethynyladenine or guanine nucleosides and TMSN3 gave 8-(1- H-1,2,3-triazol-4-yl) nucleosides in good yields. On the other hand, reactions of 5-ethynyluracil or cytosine nucleosides with TMSN3 led to the chemoselective formation of triazoles via Cu(I)-catalyzed cycloaddition or vinyl azides via Ag(I)-catalyzed hydroazidation. These nucleosides with a minimalistic triazolyl modification showed excellent fluorescent properties with 8-(1- H-1,2,3-triazol-4-yl)-2'-deoxyadenosine (8-TrzdA), exhibiting a quantum yield of 44%. The 8-TrzdA 5'-triphosphate was incorporated into duplex DNA containing a one-nucleotide gap by DNA polymerase β.
Collapse
Affiliation(s)
- Zhiwei Wen
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Paloma R Tuttle
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - A Hasan Howlader
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Anna Vasilyeva
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Laura Gonzalez
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Antonija Tangar
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ruipeng Lei
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Eduardo E Laverde
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Yuan Liu
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|