1
|
Gao L, Wang M, Ren H, Yao J, Miao M, Zhou H. Rhodium(III)-Catalyzed Sequential Cyclization of Enaminones with 1,3-Dienes via C-H Activation for the Synthesis of Fluorenones. J Org Chem 2024. [PMID: 39700463 DOI: 10.1021/acs.joc.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An efficient method for construction of various fluorenones has been achieved via Rh(III)-catalyzed C-H activation/[4 + 2] annulation/aromatization sequences of simple and readily available enaminones and 1,3-dienes. This protocol showed good substrate compatibility as an array of structurally and electronically diverse fluorenones prepared efficiently in moderate to good yields and preparative scale utility showing very good efficiency in the late-stage functionalization of complex valuable molecules.
Collapse
Affiliation(s)
- Lei Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Min Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Hongwei Ren
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Maozhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| |
Collapse
|
2
|
Roy P, Mahato K, Shrestha D, Mohandoss S, Lee SW, Lee YR. Recent advances in site-selective transformations of β-enaminones via transition-metal-catalyzed C-H functionalization/annulation. Org Biomol Chem 2024; 23:36-58. [PMID: 39529594 DOI: 10.1039/d4ob01612b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
β-Enaminone transformation strategies are widely employed in the synthesis of numerous biologically active drugs and natural products, highlighting their significance in medicinal chemistry. In recent years, various strategies have been developed for synthesizing several five- and six-membered heterocycles, as well as substituted polyaromatic scaffolds, which serve as crucial synthons in drug development, from β-enaminones. Among these approaches, site-selective transformations of β-enaminones via C-H activation and annulation have been particularly well explored. This review summarizes the most recent literature (over the past eight years) on β-enaminone transformations for developing bioactive scaffolds through site-selective C-H bond functionalization and annulation.
Collapse
Affiliation(s)
- Prasanta Roy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Karuna Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Divya Shrestha
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Seung Woo Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Tu Z, Wan JP, Wei L, Liu Y. Iridium-catalyzed reduction of o-hydroxyl phenyl enaminones for the synthesis of propiophenones and their application in 3-methyl chromone synthesis. Org Biomol Chem 2024; 22:8279-8284. [PMID: 39301715 DOI: 10.1039/d4ob01359j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A method of reducing o-hydroxyphenyl enaminones with silane as the reductant to provide o-hydroxyl propiophenones has been achieved with iridium catalysis. The reduction reactions were found to proceed via the assistance of the hydroxyl group in the phenyl ring. In addition, the o-hydroxyl propiophenone products were used for the easy synthesis of 3-methyl chromones by directly incorporating N,N-dimethyl formamide dimethyl acetal (DMF-DMA) without using any catalyst.
Collapse
Affiliation(s)
- Zhi Tu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Li Wei
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
4
|
Yang C, Li B, Zhang X, Fan X. Synthesis of Indenone-Fused Pyran Derivatives from Aryl Enaminones and Cyclopropenones through Unsymmetrical Relay C-H Bond Activation and Double C-C/C-O Bond Formation. Org Lett 2024; 26:6602-6607. [PMID: 39078057 DOI: 10.1021/acs.orglett.4c02197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Presented herein is a novel synthesis of indenone-fused pyran derivatives via the cascade reactions of aryl enaminones with cyclopropenones. The formation of products involves a one-pot cascade procedure consisting of aryl C-H bond and enamine C-H bond functionalization along with C-C bond cleavage of cyclopropenone and 1,3-rearrangement of the in situ-formed allylic alcohol moiety followed by intramolecular O-nucleophilic addition and Me2NH elimination. To our knowledge, this is the first synthesis of indenone-fused pyran derivatives via simultaneous formation of both indenone and pyran scaffolds through concurrent unsymmetrical relay C-H bond activation and double C-C/C-O bond formation. Moreover, the usefulness of this method is further showcased by its suitability for large-scale synthetic scenarios and diverse transformations of products.
Collapse
Affiliation(s)
- Chun Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bin Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Roy P, Shrestha D, Akhtar MS, Lee YR. Rh-Catalyzed Annulation of Enaminones with Maleimides for Functionalized Aza-spiro α-Tetralones and Benzo[ e]isoindoles via C-H Activation/C═C Bond Cleavage. Org Lett 2024; 26:142-147. [PMID: 38109110 DOI: 10.1021/acs.orglett.3c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
An unprecedented strategy for Rh-catalyzed C-H activation/C═C bond cleavage of enaminones is described for the construction of biologically interesting aza-spiro α-tetralones and benzo[e]isoindoles. This protocol provides diversely functionalized aza-spiro α-tetralones and benzo[e]isoindoles in good yields via a [4 + 2] annulation of the exomaleimides and maleimides. This strategy displays a good substrate scope, outstanding functional group tolerance, and excellent regioselectivity.
Collapse
Affiliation(s)
- Prasanta Roy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Divya Shrestha
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Zhang M, Chen L, Sun H, Liu Z, Huang J, Yu F. Synthesis of Tetrahydro-indolones through Rh(III)-Catalyzed [3 + 2] Annulation of Enaminones with Iodonium Ylides. Org Lett 2023; 25:7298-7303. [PMID: 37787679 DOI: 10.1021/acs.orglett.3c02515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
An unprecedented protocol for a Rh(III)-catalyzed [3 + 2] annulation from simple and readily available enaminones and iodonium ylides has been developed. The novel strategy allows for access to a new class of structurally diverse tetrahydro-indolones with high efficiency and a broad substrate scope. In addition, this transformation represents the first example of the selective Rh(III)-catalyzed alkenyl C-H bond functionalization and annulation of enaminones. Finally, the potential applications of this protocol are demonstrated through gram-scale reaction and late-stage modification.
Collapse
Affiliation(s)
- Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| | - Haifeng Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
7
|
Zhang M, Chen L, Sun H, Liu Z, Yan SJ, Yu F. Rh(III)-Catalyzed [3 + 2] Annulation/Pinacol Rearrangement Reaction of Enaminones with Iodonium Ylides: Direct Synthesis of 2-Spirocyclo-pyrrol-3-ones. Org Lett 2023; 25:7214-7219. [PMID: 37751319 DOI: 10.1021/acs.orglett.3c02810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A novel Rh(III)-catalyzed cascade alkenyl C-H activation/[3 + 2] annulation/pinacol rearrangement reaction of enaminones with iodonium ylides has been developed. This methodology provides a new and straightforward synthetic strategy to afford highly functionalized 2-spirocyclo-pyrrol-3-ones in satisfactory yield from readily available starting materials under mild conditions. Moreover, gram-scale reactions and further derivatization experiments are implemented to demonstrate the potential utility of this developed approach.
Collapse
Affiliation(s)
- Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming 650500, People's Republic of China
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming 650500, People's Republic of China
| | - Haifeng Sun
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming 650500, People's Republic of China
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming 650500, People's Republic of China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming 650500, People's Republic of China
| |
Collapse
|
8
|
Suresh V, Naveen Kumar M, Nagireddy A, Sridhar Reddy M. Rhodium‐Catalyzed Dual C−H Activation for Regioselective Triple Annulation of Enaminones: Access to Polycyclic Naphthopyran Derivatives. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Vavilapalli Suresh
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Muniganti Naveen Kumar
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Attunuri Nagireddy
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Maddi Sridhar Reddy
- OSPC Division CSIR-Indian Institute of Chemical Technology Habsiguda Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| |
Collapse
|
9
|
Wang Q, Li Y, Sun J, Chen S, Li H, Zhou Y, Li J, Liu H. Rh-Catalyzed C-H Activation/Annulation of Enaminones and Cyclic 1,3-Dicarbonyl Compounds: An Access to Isocoumarins. J Org Chem 2023; 88:5348-5358. [PMID: 37011379 DOI: 10.1021/acs.joc.2c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
A facile access to isocoumarins has been established via rhodium(III)-catalyzed C-H bond activation and intramolecular C-C cascade annulation of enaminones and cyclic 1,3-dicarbonyl compounds. The synthetic protocol features a wide range of substrates with high functional group tolerance, mild reaction conditions, and the selective cleavage of the enaminone C-C bond. Notably, the cyclic 1,3-dicarbonyl compounds can in situ-generate iodonium ylide as a carbene precursor to prepare polycyclic scaffolds by reacting with PhI(OAc)2. The application of this method to prepare useful synthetic precursors and bioactive skeletons is also exemplified.
Collapse
Affiliation(s)
- Qian Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ying Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jina Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hui Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jian Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
10
|
Song W, Liu Y, Yan N, Wan JP. Tunable Key [3 + 2] and [2 + 1] Cycloaddition of Enaminones and α-Diazo Compounds for the Synthesis of Isomeric Isoxazoles: Metal-Controlled Selectivity. Org Lett 2023; 25:2139-2144. [PMID: 36946543 DOI: 10.1021/acs.orglett.3c00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The three-component reactions of enaminones, α-diazo esters/ketones, and t-butyl nitrite (TBN) for the switchable synthesis of isomeric isoxazoles have been realized. The catalysis with Cu(II) salt provides 3,4-disubsituted isoxazoles via [3 + 2] cycloaddition. On the other hand, the catalysis of Ag(I) with identical substrates leads to isomeric isoxazoles with reversed C3 and C4 substitution based on a key [2 + 1] cycloaddition.
Collapse
Affiliation(s)
- Wenli Song
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
11
|
Liu D, Song S, Chen L, Zhang M, Liu Z, Lu X, Huang J, Yu F. Access to thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives via a regioselective oxidative annulation reaction. Org Biomol Chem 2023; 21:2596-2602. [PMID: 36891944 DOI: 10.1039/d3ob00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A metal-free regioselective oxidative annulation reaction of readily available 2,4-pentanediones with primary amines has been described. This protocol provides a divergent strategy for the incorporation of various radical donors into 5-alkylidene 3-pyrrolin-2-one skeletons, producing a variety of thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives. Moreover, the diverse synthetic transformations of the 5-alkylidene 3-pyrrolin-2-one products were also investigated.
Collapse
Affiliation(s)
- Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Xihang Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| | - Jiuzhong Huang
- School of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P. R. China.
| |
Collapse
|
12
|
Chen D, Wan C, Liu Y, Wan JP. Three-Component Fusion to Pyrazolo[5,1- a]isoquinolines via Rh-Catalyzed Multiple Order Transformation of Enaminones. J Org Chem 2023; 88:4833-4838. [PMID: 36947699 DOI: 10.1021/acs.joc.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
A facile and practical method for the synthesis of fused tricyclic pyrazolo[5,1-a]isoquinolines has been realized via the reactions of enaminones, hydrazine hydrochloride, and internal alkynes. By means of Rh catalysis, the extraordinary high-order bond functionalization, including the transformation of aryl C-H, ketone C═O, and alkenyl C-N bonds in the enaminones, marks the major feature of the cascade reactions. The results disclose the individual advantage of enaminones in the design of novel and efficient synthetic methods.
Collapse
Affiliation(s)
- Demao Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Changfeng Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| |
Collapse
|
13
|
Tian S, Liu Y, Wan C, Wan JP, Hao G. Catalyst-Free Cascade Annulation of Enaminones and Aryl Diazonium Tetrafluoroboronates for Cinnoline Synthesis and the Anti-Inflammatory Activity Study. J Org Chem 2023; 88:2433-2442. [PMID: 36753776 DOI: 10.1021/acs.joc.2c02858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A simple and concise method for the synthesis of cinnolines has been developed by the reactions of readily available enaminones and aryl diazonium tetrafluoroboronates. The reactions run efficiently to provide cinnolines with broad diversity in the substructure by heating in dimethyl sulfoxide without using any catalyst or additive. In addition, the primary investigation of the anti-inflammatory activity of these products leads to the observation of p-chlorobenzoyl (3f) and p-nitrobenzoyl (3j) cinnolines as attractive anti-inflammatory compounds in vitro.
Collapse
Affiliation(s)
- Shanghui Tian
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Changfeng Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
14
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Yang Z, Liu C, Lei J, Zhou Y, Gao X, Li Y. Rh(III)-catalyzed C-H/C-C bond annulation of enaminones with iodonium ylides to form isocoumarins. Chem Commun (Camb) 2022; 58:13483-13486. [PMID: 36383089 DOI: 10.1039/d2cc05899e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A straightforward approach to synthesise isocoumarins via Rh(III)-catalyzed C-H/C-C bond activation/annulation cascade of enaminones and iodonium ylides has been explored. The established protocol is characterized by an exceedingly simple reaction system, high regioselectivity and good functional group tolerance. Moreover, this strategy may provide a new route to cleavage of the C(sp2)-C(O) bond of unstrained ketones.
Collapse
Affiliation(s)
- Zi Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Chaoshui Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Jieni Lei
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yi Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Xiaohui Gao
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yaqian Li
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| |
Collapse
|
16
|
Chen J, Han J, Zhang J, Li L, Zhang Z, Yang Y, Jiang Y. Rhodium/Amine Dual Catalytic System for Reassembling C≡C Bonds of Conjugated Alkynes with Cyclopropenes via Cutting/Insertion Cascade. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jie Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiabin Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ling Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Chen K, Zhao B, Liu Y, Wan JP. Thiazole-5-carbaldehyde Synthesis by Cascade Annulation of Enaminones and KSCN with Dess-Martin Periodinane Reagent. J Org Chem 2022; 87:14957-14964. [PMID: 36260927 DOI: 10.1021/acs.joc.2c01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Dess-Martin periodinane (DMP) reagent-mediated reactions of tertiary enaminones with potassium thiocyanate for the synthesis of thiazole-5-carbaldehydes are developed. The product formation involves cascade hydroxyl thiocyanation of the C═C double bond, intramolecular hydroamination of the C≡N bond, and thiazole annulation by condensation on the ketone carbonyl site, representing novel reaction pathways in the reactions between enaminones and thiocyanate salt. DMP plays dual roles in mediating the free radical thiocyanation and inducing the unconventional selective thiazole-5-carbaldehyde formation by masking the in situ generated formyl group during the reaction process.
Collapse
Affiliation(s)
- Kang Chen
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Yunyun Liu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, Zhejiang 312000, PR China
| | - Jie-Ping Wan
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
18
|
Li X, Chen Z, Liu Y, Luo N, Chen W, Liu C, Yu F, Huang J. Nickel-Catalyzed Reductive Borylation of Enaminones via C(sp 2)-N Bond Cleavage. J Org Chem 2022; 87:10349-10358. [PMID: 35895906 DOI: 10.1021/acs.joc.2c00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cleavage and transformation of alkenyl C(sp2)-N bonds is a significant synthetic challenge. Herein we described an unprecedented nickel-catalyzed reductive borylation of enaminones to synthesize β-ketone boronic esters. Notably, B2pin2 played the dual role in this process, and water served as a hydrogen source, which was transferred to target products. The air-stable nickel catalyst was applied to the cleavage of alkenyl C(sp2)-N bonds, concomitant with the reductive process of the alkenyl boronic ester intermediates, on the basis of the mechanism study.
Collapse
Affiliation(s)
- Xiaoning Li
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Nianhua Luo
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenfu Liu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiuzhong Huang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| |
Collapse
|
19
|
Dattatri, Singam MKR, Nanubolu JB, Reddy MS. Cu-Catalyzed tandem cyclization and coupling of enynones with enaminones for multisubstituted furans & furano-pyrroles. Org Biomol Chem 2022; 20:6363-6367. [PMID: 35861157 DOI: 10.1039/d2ob00839d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy that efficiently constructs complex molecular diversity in a few steps will always be embraced by organic chemists. Here, we report a cascade reaction of enynones with enaminones via carbene insertion and aryl migration to engineer distinctive multisubstituted furans with an all-carbon quaternary center, and could extend the protocol in the same pot towards furano-pyrrole bis-heterocycles. Heterogeneity of this protocol was proved with the upshot of divergent chemical space under a relatively mild reaction environment.
Collapse
Affiliation(s)
- Dattatri
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Maneesh Kumar Reddy Singam
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of OSPC, CSIR-Indian Institute of Chemical Technology, Habsiguda, Hyderabad 500007, India. .,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
20
|
Wu H, Luo T, Wan JP, Jiang J, Liu Y. Nickel‐Catalyzed Tandem Ring Contraction of TEMPO and C‐N Bond Transamination of Enaminones toward Amino Diversity of Enaminones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haozhi Wu
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Tian Luo
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jie-Ping Wan
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Jianwen Jiang
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Yunyun Liu
- Jiangxi Normal University College of Chemistry and Chemical Engineering 99 Ziyang Road 330022 Nanchang CHINA
| |
Collapse
|
21
|
Wang Z, Zhao B, Liu Y, Wan J. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhouying Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang 312000 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
22
|
Ma P, Wang J, Liu G. Direct Synthesis of 1‐Naphthylamines Enabled by 6‐endo‐dig Cyclization Strategy Using Copper Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Ma
- Department of Chemistry, College of Science Tianjin University Tianjin P. R. China
| | - Jianhui Wang
- Department of Chemistry, College of Science Tianjin University Tianjin P. R. China
| | - Guiyan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules (Tianjin), College of Chemistry Tianjin Normal University Tianjin P. R. China
| |
Collapse
|
23
|
Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Metal-free synthesis of gem-difluorinated heterocycles from enaminones and difluorocarbene precursors. Chem Commun (Camb) 2022; 58:3477-3480. [PMID: 35191446 DOI: 10.1039/d2cc00383j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cascade strategy to synthesise gem-difluorinated 2H-furans from reactions of BrCF2CO2Et with enaminones has been described. The reactions tolerate a wide variety of functional groups under metal-free conditions. An active aminocyclopropane is proposed to be a key intermediate through the cyclopropanation of difluorocarbene with enaminones, which further triggers a regioselective C-C bond cleavage in situ to afford the corresponding gem-difluorinated 2H-furans.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Enfu Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
24
|
Lian P, Li R, Wan X, Xiang Z, Liu H, Cao Z, Wan X. Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Org Chem Front 2022. [DOI: 10.1039/d1qo01613j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An unprecedented strategy for the acetylation of alcohols and amines using diacetyl as both an acylation reagent and a photosensitizer was well developed.
Collapse
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zixin Xiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhiyu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Yu JX, Wu LJ, Wang ZQ, Xu ZF, Li JH. Palladium-catalyzed alkynylative [5 + 1] carboannulation of 1,3-diarylprop-2-yn-1-yl acetates with terminal alkynes enabled by C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01836a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using 1,3-diarylprop-2-yn-1-yl acetates as the five-carbon components enables alkynylative[5 + 1] carboannulation involving C–H functionalization toward 3-ethynyl-1-methylene-1,2-dihydronaphthalenes.
Collapse
Affiliation(s)
- Jiang-Xi Yu
- Key Laboratory of Functional Meta-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials (University of Hunan Province), Hengyang Normal University, Hengyang 421008, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhi-Qiang Wang
- Key Laboratory of Functional Meta-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials (University of Hunan Province), Hengyang Normal University, Hengyang 421008, China
| | - Zhi-Feng Xu
- Key Laboratory of Functional Meta-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials (University of Hunan Province), Hengyang Normal University, Hengyang 421008, China
| | - Jin-Heng Li
- Key Laboratory of Functional Meta-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials (University of Hunan Province), Hengyang Normal University, Hengyang 421008, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
26
|
Tsang YL, Choy PY, Leung MP, He X, Kwong FY. Recent advances in rhodium-catalysed cross-dehydrogenative-coupling between two C(sp2)-H bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01948a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium-catalysed cross-dehydrogenative coupling (CDC) has received considerable attention in recent years. This modern technology has been considered as an attractive synthetic tool for selective C−C bond formation due to (1)...
Collapse
|
27
|
Sheng H, Chen Z, Li X, Su J, Song Q. Construction and transformations of 2,2-difluoro-2,3-dihydrofurans from enaminones and diflurocarbene. Org Chem Front 2022. [DOI: 10.1039/d2qo00468b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient construction of 2-difluoro-2,3-dihydrofurans was reported, which features metal-free, additive-free, broad functional group tolerance and readily accessible starting materials. It is worth mentioning that this type of...
Collapse
|
28
|
Nagireddy A, Dattatri, Kotipalli R, Nanubolu JB, Reddy MS. Rhodium-Catalyzed Regioselective Double Annulation of Enaminones with Propargyl Alcohols: Rapid Access to Arylnapthalene Lignan Derivatives. J Org Chem 2021; 87:1240-1248. [PMID: 34965126 DOI: 10.1021/acs.joc.1c02575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present here a rhodium-catalyzed oxidative three-point double annulation of enaminones with propargylic alcohols via a C-H and a C-N bond activation to access arylnaphthalene-based lignan derivatives. The key step in the reaction is the regioselective insertion of propargylic alcohol into the rhoda-cycle, a result of hydroxyl rhodium coordination. Necessary control experiments and KIE studies were conducted to determine the mechanism.
Collapse
Affiliation(s)
- Attunuri Nagireddy
- Department of Oraganic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Dattatri
- Department of Oraganic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ramesh Kotipalli
- Department of Oraganic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Oraganic Syntheis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
29
|
Jiang C, Wu J, Han J, Chen K, Qian Y, Zhang Z, Jiang Y. An expedient synthesis of highly functionalized 1,3-dienes by employing cyclopropenes as C4 units. Chem Commun (Camb) 2021; 57:5710-5713. [PMID: 33982703 DOI: 10.1039/d1cc01254a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient method has been described to synthesize dicarbonyl functionalized 1,3-dienes by cleaving the C[double bond, length as m-dash]C bond of enaminones with cyclopropenes in the presence of a rhodium catalyst. The acetate-substituted cyclopropenes are judiciously chosen as standard C4 units of 1,3-diene precursors. The reactions are believed to undergo a unique cutting and insertion process, involving a C[double bond, length as m-dash]C bond cleavage of the enaminone and insertion of a new C(sp2) source with the formation of two C-C single bonds. A broad range of substrates can be used to synthesize the corresponding 1,3-dienes under very mild reaction conditions, including low catalyst-loading, ambient temperature, and a neutral reaction solvent.
Collapse
Affiliation(s)
- Chengzhou Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Jiamin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Jiabin Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Kai Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| | - Yang Qian
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. and Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| |
Collapse
|
30
|
Jiang Z, Zhou J, Zhu H, Liu H, Zhou Y. Rh(III)-Catalyzed [5 + 1] Annulation of Indole-enaminones with Diazo Compounds To Form Highly Functionalized Carbazoles. Org Lett 2021; 23:4406-4410. [PMID: 34018745 DOI: 10.1021/acs.orglett.1c01341] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel Rh(III)-catalyzed C-H activation/annulation cascade of indole-enaminones with diazo compounds was reported to construct diversely functionalized carbazole frameworks. The most notable characteristic is that this transformation could smoothly furnish a novel [5 + 1] cyclization product with good to excellent yields (up to 95%), accompanied by the thorough removal of acetyl and N,N-dimethyl groups of two substrates from the target products, rather than the normally expected [4 + 2] cyclization products.
Collapse
Affiliation(s)
- Zhidong Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haoran Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
31
|
Sultana S, González-Montiel GA, Pradhan S, Khanal HD, Nale SD, Cheong PHY, Lee YR. In(III)-Catalyzed Direct Regioselective Syntheses of 1-Naphthaldehyde Derivatives via a Hidden Aldehyde 1,3-Translocation and Disjointed CO 2 Extrusion. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sabera Sultana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Gisela A. González-Montiel
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Samjhana Pradhan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sagar D. Nale
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
32
|
Guo Z, Zhao Y, Wang Y, Xie M, Zhang J. Construction of 3-Sulfonyl Naphthalenes via Tandem Reaction of 1,4-Diyn-3-yl Esters with Sodium Sulfinates. J Org Chem 2021; 86:6247-6258. [PMID: 33874722 DOI: 10.1021/acs.joc.1c00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polysubstituted 3-sulfonyl naphthalenes were constructed in good to high yields by AlCl3-mediated tandem reaction of 1,4-diyn-3-yl esters and sodium sulfinates. This reaction proceeded under mild reaction conditions and tolerated a variety of functional groups. Moreover, the mechanistic studies indicated that the initial formation of allene under DBU from 1,4-diyn-3-yl ester and a sequence of nucleophilic addition of sodium sulfinate, the formation of allene, and intramolecular cyclization might be involved.
Collapse
Affiliation(s)
- Ziyi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yiming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yu Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
33
|
Iron-catalyzed [4 + 2] annulation of α,β-unsaturated ketoxime acetates with enaminones toward functionalized pyridines. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
Jiang WN, Zhao QL, Cheng WS, Xiao JA, Xiang HY, Chen K, Yang H. CuI-mediated benzannulation of ( ortho-arylethynyl)phenylenaminones to assemble α-aminonaphthalene derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00298h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-mediated annulation protocol for new (ortho-arylethynyl)phenyl enaminones bearing a N,N-dimethylamine moiety was developed to facilely install a series of α-aminonaphthalene derivatives.
Collapse
Affiliation(s)
- Wen-Nian Jiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Qing-Lan Zhao
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Wen-Shuo Cheng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science
- Nanning Normal University
- Nanning 530001
- P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083
- P. R. China
| |
Collapse
|
35
|
Lu F, Zhang K, Wang X, Yao Y, Li L, Hu J, Lu L, Gao Z, Lei A. Electrochemical Oxidative Cross‐Coupling of Enaminones and Thiophenols to Construct C−S Bonds. Chem Asian J 2020; 15:4005-4008. [DOI: 10.1002/asia.202001116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Fangling Lu
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Kan Zhang
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Xiaoyu Wang
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Yanxiu Yao
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Liangsen Li
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Jianguo Hu
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences the Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 P. R.China
| | - Ziwei Gao
- College of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Xian Shi 710119 P. R.China
| | - Aiwen Lei
- College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang 330022 Jiangxi P. R.China
- College of Chemistry and Molecular Sciences the Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 P. R.China
| |
Collapse
|
36
|
Abstract
AbstractEnaminones are gaining increasing interest because of their unique properties and their importance in organic synthesis as versatile building blocks. N,N-Dimethyl enaminones offer a better leaving group (a dimethylamine group) than other enaminones, and allow further elaboration via a range of facile chemical transformations. Over the past five years, there have been an increasing number of reports describing the synthetic applications of N,N-dimethyl enaminones. This review provides a comprehensive overview on the synthetic applications of N,N-dimethyl enaminones that have been reported since 2016.1 Introduction2 Direct C(sp2)–H α-Functionalization2.1 Synthesis of α-Sulfenylated N,N-Dimethyl Enaminones2.2 Synthesis of α-Thiocyanated N,N-Dimethyl Enaminones2.3 Synthesis of α-Acyloxylated N,N-Dimethyl Enaminones3 Functionalization Reactions via C=C Double Bond Cleavage3.1 Synthesis of Functionalized Methyl Ketones3.2 Synthesis of α-Ketoamides, α-Ketoesters and 1,2-Diketones3.3 Synthesis of N-Sulfonyl Amidines4 Construction of All-Carbon Aromatic Scaffolds4.1 Synthesis of Benzaldehydes4.2 Synthesis of the Naphthalenes5 Construction of Heterocyclic Scaffolds5.1 Synthesis of Five-Membered Heterocycles5.2 Synthesis of Six-Membered Heterocycles5.3 Synthesis of Quinolines 5.4 Synthesis of Functionalized Chromones5.5 Synthesis of Other Fused Polycyclic Heterocycles6 Conclusions and Perspectives
Collapse
Affiliation(s)
- Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology
| | | |
Collapse
|
37
|
Tian L, Wan J, Sheng S. Transition Metal‐free C−H Sulfonylation and Pyrazole Annulation Cascade for the Synthesis of 4‐Sulfonyl Pyrazoles. ChemCatChem 2020. [DOI: 10.1002/cctc.202000244] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lihong Tian
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Shouri Sheng
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
38
|
Feng J, He T, Xie Y, Yu Y, Baell JB, Huang F. I 2-Promoted [4 + 2] cycloaddition of in situ generated azoalkenes with enaminones: facile and efficient synthesis of 1,4-dihydropyridazines and pyridazines. Org Biomol Chem 2020; 18:9483-9493. [PMID: 33179698 DOI: 10.1039/d0ob01958e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile and efficient strategy for the synthesis of 1,4-dihydropyridazines and pyridazines through I2-promoted [4 + 2] cycloaddition of in situ generated azoalkenes with enaminones has been developed. The switch in selectivity is attributed to the judicious choice of different reaction temperatures. The key features of this work include controllable and selective synthesis, good functional group tolerance, good to excellent reaction yields, metal/base-free conditions, and also applicability to one-pot methodology.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Tiantong He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. and Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. and School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
39
|
Sk MR, Maji MS. Cobalt(iii)-catalyzed ketone-directed C–H vinylation using vinyl acetate. Org Chem Front 2020. [DOI: 10.1039/c9qo01164a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Weakly coordinating, ketone-directed C–H vinylation using vinyl acetate is reported here for a wide range of aromatic ketones such as acetophenones, diaryl ketones, chromones and chalcones under cost-effective and air-stable cobalt(iii)-catalysis.
Collapse
Affiliation(s)
- Md Raja Sk
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Modhu Sudan Maji
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
40
|
Liang X, Guo P, Yang W, Li M, Jiang C, Sun W, Loh TP, Jiang Y. Stereoselective synthesis of trifluoromethyl-substituted 2H-furan-amines from enaminones. Chem Commun (Camb) 2020; 56:2043-2046. [DOI: 10.1039/c9cc08582c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A straightforward strategy for synthesis of highly functionalized trifluoromethyl 2H-furans is described.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Institute of Advanced Synthesis
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Pan Guo
- Institute of Advanced Synthesis
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Wenjie Yang
- Institute of Advanced Synthesis
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Meng Li
- Institute of Advanced Synthesis
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Chengzhou Jiang
- Institute of Advanced Synthesis
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Wangbin Sun
- Institute of Advanced Synthesis
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- Division of Chemistry and Biological Chemistry
| | - Yaojia Jiang
- Institute of Advanced Synthesis
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| |
Collapse
|
41
|
Zheng X, Wan J. The C=C Bond Decomposition Initiated by Enamine‐Azide Cycloaddition for Catalyst‐ and Additive‐Free Synthesis of
N
‐Sulfonyl Amidines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xixi Zheng
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
42
|
Deng L, Cao X, Liu Y, Wan JP. In-Water Synthesis of 5-Thiolated 1,2,3-Triazoles from β-Thioenaminones by Diazo Transfer Reaction. J Org Chem 2019; 84:14179-14186. [PMID: 31608630 DOI: 10.1021/acs.joc.9b01817] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of 1,2,3-triazoles with a sulfur-based side chain has been accessed with the metal-free annulation reactions of readily available β-thiolated enaminones and tosyl hydrazine. By these reactions with water as the only medium, a broad array of 5-thiolated 1,2,3-triazoles have been synthesized with generally good to excellent yields. Except using TMEDA (N,N,N',N'-tetramethylethylenediamine) as the only base promoter, not any other catalyst or additive is required, thus providing an efficient and environmentally benign method for useful 1,2,3-triazole synthesis.
Collapse
Affiliation(s)
- Leiling Deng
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| | - Xiaoji Cao
- Research Centre of Analysis and Measurement , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou , Zhejiang 310014 , People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , People's Republic of China
| |
Collapse
|
43
|
Luo T, Xu H, Liu Y. Aqueous Synthesis of 3,4‐Dihydropyridinones from Acryloyl Chloride and Enaminones by Domino Amidation and Intramolecular Michael Addition. ChemistrySelect 2019. [DOI: 10.1002/slct.201902898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tian Luo
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Haishun Xu
- State Key Laboratory of Subtropical SilvicultureDepartment of Traditional Chinese MedicineZhejiang A&F University Hangzhou 311300 P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
44
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
45
|
Chen J, Guo P, Zhang J, Rong J, Sun W, Jiang Y, Loh T. Synthesis of Functionalized α‐Vinyl Aldehydes from Enaminones. Angew Chem Int Ed Engl 2019; 58:12674-12679. [DOI: 10.1002/anie.201906213] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jie Chen
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Pan Guo
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jianguo Zhang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Jiaxin Rong
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Wangbin Sun
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Yaojia Jiang
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
| | - Teck‐Peng Loh
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637616 Singapore
| |
Collapse
|
46
|
Bi HY, Du M, Pan CX, Xiao Y, Su GF, Mo DL. Nickel(II)-Catalyzed [5 + 1] Annulation of 2-Carbonyl-1-propargylindoles with Hydroxylamine To Synthesize Pyrazino[1,2- a]indole-2-oxides in Water. J Org Chem 2019; 84:9859-9868. [PMID: 31347845 DOI: 10.1021/acs.joc.9b00784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An atom-economical and practical method for the efficient synthesis of various pyrazino[1,2-a]indole-2-oxides was developed through a nickel(II)-catalyzed [5 + 1] annulation of 2-carbonyl-1-propargylindoles with hydroxylamine in water without using an organic solvent. The reaction involved an initial condensation of 2-carbonyl-1-propargylindoles with hydroxylamine to afford oxime intermediates, which then underwent a nickel(II)-catalyzed 6-exo-dig cyclization. Preliminary studies showed that (n-Bu)4NI served as a phase transfer catalyst and promoted the formation of active nickel(II) species. More importantly, the nickel(II) salt and phase transfer catalyst-in-water could be recycled seven times, and a gram scalable product was easily obtained in good yields through a filtration and washing protocol.
Collapse
Affiliation(s)
- Hong-Yan Bi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Min Du
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Yuhong Xiao
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , P. R. China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| |
Collapse
|
47
|
Huang W, Chen S, Yang J, El‐Harairy A, Wang X, Li M, Gu Y. Modular Synthesis of Bicyclic and Tricyclic (Aza‐) Arenes from Nucleophilic (Aza‐)Arenes with Electrophilic Side Arms via [4+2] Annulation Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenbo Huang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Shaomin Chen
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Jian Yang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Ahmed El‐Harairy
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Xin Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Minghao Li
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
| | - Yanlong Gu
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology 1037 Luoyu road, Hongshan District Wuhan 430074 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, LanzhouInstitute of Chemical Physics Lanzhou 730000 People's Republic of China
| |
Collapse
|
48
|
Morofuji T, Kinoshita H, Kano N. Connecting a carbonyl and a π-conjugated group through a p-phenylene linker by (5+1) benzene ring formation. Chem Commun (Camb) 2019; 55:8575-8578. [PMID: 31274134 DOI: 10.1039/c9cc04012a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A benzene ring was formed to connect a carbonyl group of various methyl ketones with a π-conjugated group through a p-phenylene linker. Methyl ketones and streptocyanines were used as the C1 and C5 sources, respectively, in the (5+1) annulation, which could form donor-π-acceptor molecules.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hanae Kinoshita
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
49
|
Obydennov DL, Chernyshova EV, Sosnovskikh VY. Self-Condensation of Enaminodiones as a Method for Benzene Ring Construction: Synthesis of Diacyl-Substituted Phenols and Catechols. J Org Chem 2019; 84:6491-6501. [DOI: 10.1021/acs.joc.9b00623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dmitrii L. Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Elena V. Chernyshova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| | - Vyacheslav Y. Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russian Federation
| |
Collapse
|