1
|
Liu J, Li J, Ren B, Zhang Y, Xue L, Wang Y, Zhao J, Zhang P, Xu X, Li P. Domino Ring‐Opening of
N
‐Tosyl Vinylaziridines Triggered by Aryne Diels‐Alder Reaction. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiupeng Liu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Jiaqi Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Bowen Ren
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Yun Zhang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Linyi Xue
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Yanying Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Puyu Zhang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Xuejun Xu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering Henan University Kaifeng 475004 People's Republic of China
| |
Collapse
|
2
|
Li Y, Chen F, Zhu S, Chu L. Photoinduced triiodide-mediated [3 + 2] cycloaddition of N-tosyl aziridines and alkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A photoinduced triiodide-mediated [3 + 2] cycloaddition of N-Ts aziridines and alkenes is described herein. This operationally simple protocol enables regioselective access to a wide range of substituted pyrrolidines under mild-free conditions.
Collapse
Affiliation(s)
- Yuanbo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
3
|
Liu Y, Luo W, Wang Z, Zhao Y, Zhao J, Xu X, Wang C, Li P. Visible-Light Photoredox-Catalyzed Formal [5 + 1] Cycloaddition of N-Tosyl Vinylaziridines with Difluoroalkyl Halides. Org Lett 2020; 22:9658-9664. [PMID: 33236913 DOI: 10.1021/acs.orglett.0c03718] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A visible-light photoredox-catalyzed formal [5 + 1] cycloaddition of N-tosyl vinylaziridines with difluoroalkyl halides as unique C1 synthons was developed. The procedure provides an efficient and practical method to synthesize diverse pyridines in moderate to good yields. The reaction underwent a radical-initiated kinetically controlled ring-opening of vinylaziridines and involved a key α,β-unsaturated imine intermediate, followed by an E2 elimination, a 6π electrocyclization, and defluorinated aromatization.
Collapse
Affiliation(s)
- Yantao Liu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zhenjie Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yuxin Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xuejun Xu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
4
|
Yu X, Zhang S, Jiang Z, Zhang HS, Wang T. Highly Efficient and Convenient Access to Phosphinates via CHCl3
-Assisted Direct Phosphorylation between R2
P(O)H and ROH by Phosphonium Salt Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaojun Yu
- Department of Chemistry; School of Basic Medical Sciences; Southwest Medical University; 1 Xianglin Road 646000 Luzhou P. R. China
| | - Song Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road 610064 Chengdu P. R. China
| | - Zhiyu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road 610064 Chengdu P. R. China
| | - Hong-Su Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road 610064 Chengdu P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education; College of Chemistry; Sichuan University; 29 Wangjiang Road 610064 Chengdu P. R. China
| |
Collapse
|
5
|
Arribat M, Cavelier F, Rémond E. Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–S or P–N bond: from synthesis to applications. RSC Adv 2020. [DOI: 10.1039/c9ra10917j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Strategies for the preparation of phosphorus-containing amino acids and their utility in the organic chemistry, physico-chemistry, agrochemistry, and pharmacology fields are reported.
Collapse
Affiliation(s)
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| |
Collapse
|
6
|
Zhang F, Zhang Y, Tan Q, Lin L, Liu X, Feng X. Kinetic Resolution of Aziridines via Catalytic Asymmetric Ring-Opening Reaction with Mercaptobenzothiazoles. Org Lett 2019; 21:5928-5932. [PMID: 31334664 DOI: 10.1021/acs.orglett.9b02058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient kinetic resolution of racemic 2-acyl-3-aryl-N-tosylaziridines is achieved through a chiral Lewis acid promoted ring-opening reaction with 2-mercaptobenzothiazoles as the nucleophiles. The chiral N,N'-dioxide-lanthanum complex as catalyst and the 2-mercaptobenzothiazoles as active sulfur nucleophiles are the keys to the success of the reaction. A variety of enantioenriched β-amino thioethers and aziridines are obtained in good yields with good ee values.
Collapse
Affiliation(s)
- Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Yu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Qingfa Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China
| |
Collapse
|
7
|
Wang Y, Liu BY, Yang G, Chai Z. Synthesis of 2-Aminophosphates via S N2-Type Ring Openings of Aziridines with Organophosphoric Acids. Org Lett 2019; 21:4475-4479. [PMID: 31184161 DOI: 10.1021/acs.orglett.9b01302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of 2-aminophosphates is achieved by a SN2-type ring opening reaction of various N-protected or free aziridines with phosphoric acids in a regiospecific and/or enantiospecific way. A one-pot, two-step procedure is also developed enabling direct access to 2-aminophosphates from olefins without isolation of the aziridine intermediates.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Bing-Yi Liu
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Gaosheng Yang
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Zhuo Chai
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| |
Collapse
|