1
|
Lewandowski D, Hreczycho G. Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction. Int J Mol Sci 2024; 25:7894. [PMID: 39063136 PMCID: PMC11487440 DOI: 10.3390/ijms25147894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
A method for the reduction of aldehydes with pinacolborane catalyzed by pincer cobalt complexes based on a triazine backbone is developed in this paper. The presented methodology allows for the transformation of several aldehydes bearing a wide range of electron-withdrawing and electron-donating groups under mild conditions. The presented procedure allows for the direct one-step hydrolysis of the obtained intermediates to the corresponding primary alcohols. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
| | - Grzegorz Hreczycho
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 8, 61-614 Poznan, Poland;
| |
Collapse
|
2
|
Meher NK, Suryavansi M, Geetharani K. Regioselective Hydroboration of Unsymmetrical Internal Alkynes Catalyzed by a Cobalt Pincer-NHC Complex. Org Lett 2024; 26:5862-5867. [PMID: 38935048 DOI: 10.1021/acs.orglett.4c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Highly regioselective hydroboration of unsymmetrical internal alkynes remains a significant challenge for synthesizing valuable alkenylboronate esters. Herein, we describe an easily synthesizable pincer NHC-based Co complex as a catalyst for the cis-α selective hydroboration of unactivated internal alkynes and the cis-β selective hydroboration of activated internal alkynes with pinacolborane. The reaction showcases high chemo-, regio-, and stereoselectivity, and the catalyst displays high efficiency and very low loading under base-free reaction conditions. The reaction scope was demonstrated by alkynes having a variety of functional groups. The mechanistic studies suggest a feasible Co-boryl intermediate to explain the unusual regioselectivity.
Collapse
Affiliation(s)
- Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Maruti Suryavansi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Pawar RB, Karmur MH, Punji B. Ligand-free MnBr 2-Catalyzed Chemo- and Stereoselective Hydroboration of Terminal Alkynes. Chem Asian J 2024; 19:e202400158. [PMID: 38512720 DOI: 10.1002/asia.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Developing simple and benign protocols for synthesizing alkenylboronates is crucial as they are synthetically valuable compounds in various organic transformations. In this work, we report a straightforward ligand-free protocol for synthesizing alkenylboronates via atom-economical hydroboration of alkynes with HBpin catalyzed by a manganese salt. The reaction shows a high level of chemo and regioselectivity for the terminal alkynes and exclusively produces E-selective alkenylboronates. The hydroboration scope is vast, with the resilience of a range of synthetically beneficial functionalities, such as halides, ether, alkenyl, silyl and thiophenyl groups. This reaction proceeds through the involvement of a metal-hydride intermediate. The developed alkenylboronate can be smoothly converted to useful C-C, C-N and C-I bond-forming reactions.
Collapse
Affiliation(s)
- Rameshwar B Pawar
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Mital H Karmur
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
4
|
Patil MD, Ghosh KK, RajanBabu TV. Cobalt-Catalyzed Enantioselective Hydroboration of α-Substituted Acrylates. J Am Chem Soc 2024; 146:6604-6617. [PMID: 38431968 PMCID: PMC11407689 DOI: 10.1021/jacs.3c12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Even though metal-catalyzed enantioselective hydroborations of alkenes have attracted enormous attention, few preparatively useful reactions of α-alkyl acrylic acid derivatives are known, and most use rhodium catalysts. No examples of asymmetric hydroboration of the corresponding α-arylacrylic acid esters are known. In our continuing efforts to search for new applications of earth-abundant cobalt catalysts for broadly applicable organic transformations, we have identified 2-(2-diarylphosphinophenyl)oxazoline ligands and mild reaction conditions for efficient and highly regio- and enantioselective hydroboration of α-alkyl- and α-aryl- acrylates, giving β-borylated propionates. Since the C-B bonds in these compounds can be readily replaced by C-O, C-N, and C-C bonds, these intermediates could serve as valuable chiral synthons, some from feedstock carbon sources, for the synthesis of propionate-bearing motifs including polyketides and related molecules. Two-step syntheses of "Roche" ester from methyl methacrylate (79%; er 99:1), arguably the most widely used chiral fragment in polyketide synthesis, and tropic acid esters (∼80% yield; er ∼93:7), which are potential intermediates for several medicinally important classes of compounds, illustrate the power of the new methods. Mechanistic studies confirm the requirement of a cationic Co(I) species [(L)Co]+as the viable catalyst in these reactions and rule out the possibility of a [L]Co-H-initiated route, which has been well-established in related hydroborations of other classes of alkenes. A mechanism involving an oxidative migration of a boryl group to the β-carbon of an η4-coordinated acrylate-cobalt complex is proposed as a plausible route.
Collapse
Affiliation(s)
- Manoj D Patil
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Kiron Kumar Ghosh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
5
|
Nad P, Mukherjee A. A Lewis Acid-Base Pair Catalyzed Dearomative Transformation of Unprotected Indoles via B-H Bond Activation. Chem Asian J 2023; 18:e202300714. [PMID: 37811913 DOI: 10.1002/asia.202300714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
A sustainable and metal-free protocol has been described for the reduction of unprotected indoles. The catalytic system consists of B(C6 F5 )3 and THF as a Lewis acid-base pair that can activate the B-H bond of pincolborane (HBpin). The catalytic system encompasses a broad substrate scope. Control experiments were conducted to understand the possible catalytic intermediates involved during the present protocol.
Collapse
Affiliation(s)
- Pinaki Nad
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh (India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh (India
| |
Collapse
|
6
|
Lee B, Pabst TP, Hierlmeier G, Chirik PJ. Exploring the Effect of Pincer Rigidity on Oxidative Addition Reactions with Cobalt(I) Complexes. Organometallics 2023; 42:708-718. [PMID: 37223209 PMCID: PMC10201995 DOI: 10.1021/acs.organomet.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Cobalt complexes containing the 2,6-diaminopyridine-substituted PNP pincer (iPrPNMeNP = 2,6-(iPr2PNMe)2(C5H3N)) were synthesized. A combination of solid-state structures and investigation of the cobalt(I)/(II) redox potential established a relatively rigid and electron-donating chelating ligand as compared to iPrPNP (iPrPNP = 2,6-(iPr2PCH2)2(C5H3N)). Based on a buried volume analysis, the two pincer ligands are sterically indistinguishable. Nearly planar, diamagnetic, four-coordinate complexes were observed independent of the field strength (chloride, alkyl, aryl) of the fourth ligand completing the coordination sphere of the metal. Computational studies supported a higher barrier for C-H oxidative addition, largely a result of the increased rigidity of the pincer. The increased oxidative addition barrier resulted in stabilization of (iPrPNMeNP)Co(I) complexes, enabling the characterization of the cobalt boryl and the cobalt hydride dimer by X-ray crystallography. Moreover, (iPrPNMeNP)CoMe served as an efficient precatalyst for alkene hydroboration likely because of the reduced propensity to undergo oxidative addition, demonstrating that reactivity and catalytic performance can be tuned by rigidity of pincer ligands.
Collapse
Affiliation(s)
- Boran Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Meher NK, Verma PK, Geetharani K. Cobalt-Catalyzed Regioselective 1,2-Hydroboration of N-Heteroarenes. Org Lett 2023; 25:87-92. [PMID: 36596240 DOI: 10.1021/acs.orglett.2c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regioselective hydroboration of pyridines to 1,2-dihydropyridines remains a significant challenge for the synthesis of valuable nitrogenous bioactive molecules. Herein, we report a base free ligand-controlled cobalt-catalyzed 1,2-hydroboration of pyridines and quinolines with very low catalyst loading under neat reaction conditions. The choice of sterically demanding N-heterocyclic ligands led to the 1,2-regioselectivity and the scope was demonstrated by the N-heterocycles having a variety of functional groups. The preliminary mechanistic studies corroborate that the two ligands followed a distinct catalytic cycle with Co(I) as an active species.
Collapse
Affiliation(s)
- Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Budagumpi S, Keri RS, Nagaraju D, Yhobu Z, Monica V, Geetha B, Kadu RD, Neole N. Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Bołt M, Żak P. Solvent-free hydroboration of alkynes catalyzed by an NHC-cobalt complex. RSC Adv 2022; 12:18572-18577. [PMID: 35873331 PMCID: PMC9234744 DOI: 10.1039/d2ra03005e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
A new cobalt complex bearing a bulky N-heterocyclic carbene (NHC) ligand is described as a pre-catalyst for alkyne hydroboration. The proposed catalytic system, synthesized using easily accessible reagents, allowed obtaining a series of mono- and dialkenylboranes in solvent-free conditions with excellent efficiency and selectivity. The results have been compared to those obtained in the presence of the same cobalt complex containing smaller NHC ligands and those achieved for the catalytic system based on a CoCl2 - NHC precursor.
Collapse
Affiliation(s)
- Małgorzata Bołt
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan Uniwersytetu Poznańskiego 8 61-614 Poznan Poland
| | - Patrycja Żak
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan Uniwersytetu Poznańskiego 8 61-614 Poznan Poland
| |
Collapse
|
10
|
Liu T, Li C, Bai J, Zhang P, Guo Y, Wang X. Markovnikov‐Selective Hydroboration of Aryl Alkenes Enabled by A Simple Nickel Salt. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianfen Liu
- Green Catalysis Center College of Chemistry, Zhengzhou University, 100 Science Avenue, High‐Tech District Zhengzhou 450001 China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chuhan Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Panke Zhang
- Green Catalysis Center College of Chemistry, Zhengzhou University, 100 Science Avenue, High‐Tech District Zhengzhou 450001 China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub‐lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
11
|
Pandey VK, Sahoo S, Rit A. Simple silver(I)-salt catalyzed selective hydroboration of isocyanates, pyridines, and quinolines. Chem Commun (Camb) 2022; 58:5514-5517. [PMID: 35420096 DOI: 10.1039/d2cc00491g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AgSbF6 has been established as an effective catalyst for the hydroboration of structurally and electronically diverse isocyanates under ligand- and solvent-free conditions which selectively yielded either N-boryl formamides or N-boryl methylamines under different conditions. Further, various N-heterocycles can be selectively hydroborated using this simple catalytic system; pyridine derivatives undergo preferential 1,4 hydroboration whereas the formation of tetrahydroquinoline (after hydrolysis) via complete heterocycle hydrogenation was observed for quinolines.
Collapse
Affiliation(s)
- Vipin K Pandey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Sangita Sahoo
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
12
|
Abstract
Cobalt-NHC complexes have emerged as an attractive class of 3d transition metal catalysts for a broad range of chemical processes, including cross-coupling, hydrogenation, hydrofunctionalization and cycloaddition reactions. Herein, we present a comprehensive review of catalytic methods utilizing cobalt-NHC complexes with a focus on catalyst structure, the role of the NHC ligand, properties of the catalytic system, mechanism and synthetic utility. The survey clearly suggests that the recent emergence of well-defined cobalt-NHC catalysts may have a tremendous utility in the design and application of catalytic reactions using more abundant 3d transition metals.
Collapse
Affiliation(s)
- Sourav Sekhar Bera
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
13
|
Newar R, Begum W, Akhtar N, Antil N, Chauhan M, Kumar A, Gupta P, Malik J, Kumar B, Manna K. Mono‐Phosphine Metal‐Organic Framework‐Supported Cobalt Catalyst for Efficient Borylation Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajashree Newar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Wahida Begum
- Indian Institute of Technology Delhi Chemistry Hauz KhasNew Delhi 110016 New Delhi INDIA
| | - Naved Akhtar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Neha Antil
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Manav Chauhan
- Indian Institute of Technology Delhi Chemistry Hauz KhasIIT DELHI, HAUZ KHAS 110016 New Delhi INDIA
| | - Ajay Kumar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Poorvi Gupta
- Indian Institute of Technology Delhi Chemistry HAUZ KHAS 110016 New Delhi INDIA
| | - Jaideep Malik
- Indian Institute of Technology Roorkee Chemistry Roorkee 247667 Roorkee INDIA
| | - Balendra Kumar
- Sri Venkateswara College Chemistry University of Delhi 110021 New Delhi INDIA
| | - Kuntal Manna
- Indian Institute of Technology Delhi Department of Chemistry CHEMISTRY IIT DELHI, HAUZ KHAS 110016 New Delhi INDIA
| |
Collapse
|
14
|
Mahato S, Rawal P, Devadkar AK, Joshi M, Roy Choudhury A, Biswas B, Gupta P, Panda TK. Hydroboration and reductive amination of ketones and aldehydes with HBpin by a bench stable Pd(II)-catalyst. Org Biomol Chem 2022; 20:1103-1111. [PMID: 35029621 DOI: 10.1039/d1ob02339j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A palladium(II) complex [(κ4-{1,2-C6H4(NCH-C6H4O)2}Pd] (1) supported by a dianionic salen ligand [1,2-C6H4(NCH-C6H4O)2]2- (L) was synthesised and used as a molecular pre-catalyst in the hydroboration of aldehydes and ketones. The molecular structure of Pd(II) complex 1 was established by single-crystal X-ray diffraction analysis. Complex 1 was tested as a competent pre-catalyst in the hydroboration of aldehydes and ketones with pinacolborane (HBpin) to produce corresponding boronate esters in excellent yields at ambient temperature under solvent-free conditions. Further, the complex 1 proved to be a competent catalyst in the reductive amination of aldehydes with HBpin and primary amines under mild and solvent-free conditions to afford a high yield (up to 97%) of corresponding secondary amines. Both protocols provided high conversion, superior selectivity and broad substrate scope, from electron-withdrawing to electron-donating and heterocyclic substitutions. A computational study based on density functional theory (DFT) revealed a reaction mechanism for Pd-catalysed hydroboration of carbonyl species in the presence of HBpin. The protocols also uncovered the dual role of HBpin in achieving the hydroboration reaction.
Collapse
Affiliation(s)
- Shreya Mahato
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India.
| | - Parveen Rawal
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Ajitrao Kisan Devadkar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Mayank Joshi
- Department of Chemical Sciences, IISER Mohali, Punjab, India
| | | | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India.
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
15
|
Kumar GS, Moorthy S, Karmakar H, Singh SK, Panda TK. Neosilyllithium‐Catalyzed Hydroboration of Alkynes and Alkenes in the Presence of Pinacolborane (HBpin). Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gobbilla Sai Kumar
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi-502 285 Sangareddy, Telangana India
| | - Shruti Moorthy
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi-502 285 Sangareddy, Telangana India
| | - Himadri Karmakar
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi-502 285 Sangareddy, Telangana India
| | - Saurabh Kumar Singh
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi-502 285 Sangareddy, Telangana India
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi-502 285 Sangareddy, Telangana India
| |
Collapse
|
16
|
Panda TK, Kumar R, Rawal P, Banerjee I, Nayek HP, Gupta P, Panda TK. Catalytic Hydroboration and Reductive Amination of Carbonyl Compounds by HBpin using a Zinc Promoter. Chem Asian J 2022; 17:e202200013. [PMID: 35020275 DOI: 10.1002/asia.202200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/10/2022]
Abstract
In this paper, the chemoselective hydroboration of aldehydes and ketones, catalyzed by Zinc(II) complexes [ k 2 -(PyCH=NR)ZnX 2 ] [R = CPh 3 , X = Cl ( 1 ) and R = Dipp (2,6-diisoropylphenyl) and X = I ( 2 )], in the presence of pinacolborane (HBpin) in ambient temperature and solvent-free conditions, which produced corresponding boronate esters in high yield, is reported. Zinc metal complexes 1 and 2 were derived in 80-90% yield from the reaction of iminopyridine [PyCH=NR] with anhydrous zinc dichloride in dichloromethane at room temperature. The solid-state structures of both zinc complexes were confirmed using X-ray crystallography. Zinc complex 1 was also used as a competent pre-catalyst in the reductive amination of carbonyl compounds with HBpin under mild and solvent-free conditions to afford a high yield (up to 97%) of the corresponding secondary amines. The wider substrate scope of both reactions was explored. Catalytic protocols using zinc as a pre-catalyst demonstrated an atom-economic and green method with diverse substrates bearing excellent functional group tolerance. Computational studies established a plausible mechanism for catalytic hydroboration.
Collapse
Affiliation(s)
- Tarun K Panda
- IITH: Indian Institute of Technology Hyderabad, Chemistry, Kandi, Sangareddy, 502285, Hyderabad, INDIA
| | - Ravi Kumar
- IITH: Indian Institute of Technology Hyderabad, Chemistry, Kandi, Sangareddy, 502285, Hyderabad, INDIA
| | - Parveen Rawal
- IIT Roorkee: Indian Institute of Technology Roorkee, Chemistry, Roorkee, 247667, Roorkee, INDIA
| | - Indrani Banerjee
- IITH: Indian Institute of Technology Hyderabad, Chemistry, Kandi, Sangareddy, 502285, Hyderabad, INDIA
| | - Hari Pada Nayek
- IIT (ISM): Indian Institute of Technology, Chemistry, Dhanbad, 826004, Dhanbad, INDIA
| | - Puneet Gupta
- IIT Roorkee: Indian Institute of Technology Roorkee, Chemistry, Roorkee, 247667, Roorkee, INDIA
| | - Tarun K Panda
- IITH: Indian Institute of Technology Hyderabad, Chemistry, Kandi, Sangareddy, 502285, Hyderabad, INDIA
| |
Collapse
|
17
|
Zhang G. Giant N-heterocyclic carbene-containing macrocycles for cobalt-catalysed hydroboration of alkynes. Chem Commun (Camb) 2022; 58:8109-8112. [DOI: 10.1039/d2cc02815h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Giant N-heterocyclic carbene-containing organic macrocycles larger than “Texas-sized” molecular boxes have been synthesized and structurally characterized. The new macrocyles were employed for the Co-NHC promoted syn-selective hydroboration of alkynes with...
Collapse
|
18
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
19
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
20
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. Angew Chem Int Ed Engl 2021; 60:24488-24492. [PMID: 34435424 PMCID: PMC8596825 DOI: 10.1002/anie.202110736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/21/2022]
Abstract
A MnI‐catalyzed hydroboration of terminal alkenes and a 1,2‐diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti‐Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans‐1,2‐selectivity. The most active pre‐catalyst is bench‐stable alkyl bisphosphine MnI complex fac‐[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn–alkyl bond to yield an acyl intermediate, which undergoes B−H bond cleavage of HBPin (for alkenes) and rapid C−H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Daniel Zobernig
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060, Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| |
Collapse
|
21
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:24693-24697. [PMID: 38505543 PMCID: PMC10947181 DOI: 10.1002/ange.202110736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/21/2022]
Abstract
A MnI-catalyzed hydroboration of terminal alkenes and a 1,2-diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti-Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans-1,2-selectivity. The most active pre-catalyst is bench-stable alkyl bisphosphine MnI complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate, which undergoes B-H bond cleavage of HBPin (for alkenes) and rapid C-H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| | - Daniel Zobernig
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| | - Berthold Stöger
- X-Ray CenterVienna University of TechnologyGetreidemarkt 9A-1060WienAustria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de LisboaAv Rovisco Pais1049-001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryVienna University of TechnologyGetreidemarkt 9/163-ACA-1060WienAustria
| |
Collapse
|
22
|
Volochnyuk DM, Gorlova AO, Grygorenko OO. Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry 2021; 27:15277-15326. [PMID: 34499378 DOI: 10.1002/chem.202102108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/13/2022]
Abstract
This review discusses recent advances in the chemistry of saturated boronic acids, boronates, and trifluoroborates. Applications of the title compounds in the design of boron-containing drugs are surveyed, with special emphasis on α-amino boronic derivatives. A general overview of saturated boronic compounds as modern tools to construct C(sp3 )-C and C(sp3 )-heteroatom bonds is given, including recent developments in the Suzuki-Miyaura and Chan-Lam cross-couplings, single-electron-transfer processes including metallo- and organocatalytic photoredox reactions, and transformations of boron "ate" complexes. Finally, an attempt to summarize the current state of the art in the synthesis of saturated boronic acids, boronates, and trifluoroborates is made, with a brief mention of the "classical" methods (transmetallation of organolithium/magnesium reagents with boron species, anti-Markovnikov hydroboration of alkenes, and the modification of alkenyl boron compounds) and a special focus on recent methodologies (boronation of alkyl (pseudo)halides, derivatives of carboxylic acids, alcohols, and primary amines, boronative C-H activation, novel approaches to alkene hydroboration, and 1,2-metallate-type rearrangements).
Collapse
Affiliation(s)
- Dmitriy M Volochnyuk
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Alina O Gorlova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv, 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Chervonotkatska 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
23
|
Tsuji H, Hamaguchi T, Kawatsura M. Nickel-catalyzed Markovnikov 1,2-Hydroboration of In Situ Generated 1,3-Dienes Using a Secondary Homoallylic Carbonate as the 1,3-Diene and Hydride Source. CHEM LETT 2021. [DOI: 10.1246/cl.210051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Takashi Hamaguchi
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
24
|
Poitras AM, Oliemuller LK, Hatzis GP, Thomas CM. Highly Selective Hydroboration of Terminal Alkenes Catalyzed by a Cobalt Pincer Complex Featuring a Central Reactive N-Heterocyclic Phosphido Fragment. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andrew M. Poitras
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Leah K. Oliemuller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Gillian P. Hatzis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Pandey VK, Tiwari CS, Rit A. Silver-Catalyzed Hydroboration of C–X (X = C, O, N) Multiple Bonds. Org Lett 2021; 23:1681-1686. [DOI: 10.1021/acs.orglett.1c00106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Vipin K. Pandey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
26
|
Hashimoto T, Ishimaru T, Shiota K, Yamaguchi Y. Bottleable NiCl 2(dppe) as a catalyst for the Markovnikov-selective hydroboration of styrenes with bis(pinacolato)diboron. Chem Commun (Camb) 2020; 56:11701-11704. [PMID: 33000807 DOI: 10.1039/d0cc05246a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although transition-metal-catalysed hydroboration reactions of alkenes have been extensively studied, only three examples using Ni complexes have been reported so far. In this study, we have examined hydroboration reactions of alkenes using Ni/phosphine complexes. The commercially available and bottleable complex NiCl2(dppe) (dppe = 1,2-bis(diphenylphosphino)ethane) serves as a catalyst for the highly Markovnikov-selective hydroboration of styrene derivatives that affords the desired Markovnikov products in high yield.
Collapse
Affiliation(s)
- Toru Hashimoto
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Toshiya Ishimaru
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Keisuke Shiota
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
27
|
Sato Y, Nakamura K, Yabushita K, Nagao K, Ohmiya H. Tertiary Alkylations of Aldehydes, Ketones or Imines Using Benzylic Organoboronates and a Base Catalyst. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yukiya Sato
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kei Nakamura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenya Yabushita
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
28
|
Hashimoto T, Shiota K, Yamaguchi Y. Selective Synthesis of Secondary Alkylboronates: Markovnikov-Selective Hydroboration of Vinylarenes with Bis(pinacolato)diboron Catalyzed by a Nickel Pincer Complex. Org Lett 2020; 22:4033-4037. [PMID: 32365297 DOI: 10.1021/acs.orglett.0c01416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel pincer complex bearing a β-aminoketonato-based O,N,P-tridentate ligand (1a) has been employed for the highly Markovnikov-selective hydroboration of vinylarenes using bis(pinacolato)diboron. This reaction proceeds smoothly under mild reaction conditions and affords the corresponding Markovnikov products in good to high yield.
Collapse
Affiliation(s)
- Toru Hashimoto
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Keisuke Shiota
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshitaka Yamaguchi
- Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
29
|
Kumar GS, Harinath A, Narvariya R, Panda TK. Homoleptic Zinc‐Catalyzed Hydroboration of Aldehydes and Ketones in the Presence of HBpin. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gobbilla Sai Kumar
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi ‐502 285 Sangareddy Telangana India
| | - Adimulam Harinath
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi ‐502 285 Sangareddy Telangana India
| | - Rajrani Narvariya
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi ‐502 285 Sangareddy Telangana India
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi ‐502 285 Sangareddy Telangana India
| |
Collapse
|
30
|
Zhang MX, Xu HL, Su ZM. The directions of an external electric field control the catalysis of the hydroboration of C-O unsaturated compounds. RSC Adv 2019; 9:29331-29336. [PMID: 35528393 PMCID: PMC9071821 DOI: 10.1039/c9ra03895g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
The orientation directions of an external electric field (EEF) in catalyzing chemical reactions are an important factor because they can significantly accelerate reaction activity. In this study, we explored a new anti-Markovnikov hydroboration reaction of C-O unsaturated compounds (e.g., benzaldehyde and benzophenone) with the aim of revealing the dominant direction of EEF in accelerating the reactions, and pinacolborane (HBpin) was selected as an efficient reductant. The calculation results showed that the EEF oriented along the direction of electron pair transform rather than that of the molecular dipole moment could reduce the barrier of the hydroboration of benzaldehyde by 20 kcal mol-1 when the EEF was up to 150 × 10-4 au. Moreover, the Markovnikov hydroboration of aldehyde and ketone was investigated for obtaining the mechanistic-switchover point. Unsatisfactorily, the EEF could just influence the respective barriers without a promising competition with the anti-Markovnikov hydroboration reactions.
Collapse
Affiliation(s)
- Ming-Xia Zhang
- Institute of Functional Material Chemistry, Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University Changchun 130024 Jilin People's Republic of China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University Changchun 130024 Jilin People's Republic of China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University Changchun 130024 Jilin People's Republic of China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun Jilin 130012 P. R. China
| |
Collapse
|
31
|
Tamang SR, Findlater M. Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation. Molecules 2019; 24:E3194. [PMID: 31484333 PMCID: PMC6749197 DOI: 10.3390/molecules24173194] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Base metal catalysis offers an alternative to reactions, which were once dominated by precious metals in hydrofunctionalization reactions. This review article details the development of some base metals (Fe, Co, and Ni) in the hydroboration and hydrosilylation reactions concomitant with a brief overview of recent advances in the field. Applications of both commercially available metal salts and well-defined metal complexes in catalysis and opportunities to further advance the field is discussed as well.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Findlater
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
32
|
Léonard NG, Palmer WN, Friedfeld MR, Bezdek MJ, Chirik PJ. Remote, Diastereoselective Cobalt-Catalyzed Alkene Isomerization–Hydroboration: Access to Stereodefined 1,3-Difunctionalized Indanes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03444] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nadia G. Léonard
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - W. Neil Palmer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Max R. Friedfeld
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Máté J. Bezdek
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
33
|
Fan W, Li L, Zhang G. Branched-Selective Alkene Hydroboration Catalyzed by Earth-Abundant Metals. J Org Chem 2019; 84:5987-5996. [PMID: 31017441 DOI: 10.1021/acs.joc.9b00550] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalytic hydroboration of alkenes is a well-established method to access borane-functionalized hydrocarbons. While linear-selective hydroboration was predominantly reported, catalysts enabling opposite selectivity (branched-selective) are attracting considerable interest, especially when Earth-abundant metals are utilized. This Synopsis summarizes recent progress in Earth-abundant-metal-catalyzed, branched-selective hydroboration of alkenes while overviewing the historical contributions to this reaction using precious metals. Lessons learned from the current state of this topic that can guide future catalyst design are presented, along with challenging issues that remain to be addressed.
Collapse
Affiliation(s)
- Weiwei Fan
- College of Chemical Engineering and Pharmacy , Jingchu University of Technology , Jingmen 448000 , China.,Department of Sciences, John Jay College and Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10019 , United States
| | - Li Li
- College of Chemical Engineering and Pharmacy , Jingchu University of Technology , Jingmen 448000 , China
| | - Guoqi Zhang
- Department of Sciences, John Jay College and Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , New York , New York 10019 , United States
| |
Collapse
|
34
|
Affiliation(s)
- Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Shegavi ML, Bose SK. Recent advances in the catalytic hydroboration of carbonyl compounds. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00807a] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The latest development in the catalytic hydroboration of CO groups is summarized in this review. Access to borate ester intermediates provides a pathway to convert them into the corresponding valuable functionalized alcohols.
Collapse
Affiliation(s)
- Mahadev L. Shegavi
- Centre for Nano and Material Sciences (CNMS)
- JAIN (Deemed-to-be University)
- Jain Global Campus
- Bangalore-562112
- India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS)
- JAIN (Deemed-to-be University)
- Jain Global Campus
- Bangalore-562112
- India
| |
Collapse
|