1
|
Wei L, Guo Y, Li Z, Jiang H, Qi C. Silver-Catalyzed Coupling of Ethynylbenziodoxolones with CO 2 and Amines to Afford O-β-Oxoalkyl Carbamates. Org Lett 2024. [PMID: 38780900 DOI: 10.1021/acs.orglett.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A novel three-component coupling reaction of ethynylbenziodoxolones (EBXs) with CO2 and amines has been achieved via silver catalysis, thereby providing an efficient method for the construction of a range of structurally diverse and valuable O-β-oxoalkyl carbamates. The transformation proceeds under mild reaction conditions and exhibits a wide substrate scope and good functional group compatibility. In addition, this strategy could be extended to the synthesis of α-acyloxyketones using carboxylic acids as the nucleophiles to react with EBXs.
Collapse
Affiliation(s)
- Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yanhui Guo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ziyang Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
2
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
3
|
Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules 2023; 28:2136. [PMID: 36903382 PMCID: PMC10004369 DOI: 10.3390/molecules28052136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Dmitrii M. Noskov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
4
|
Le Du E, Waser J. Recent progress in alkynylation with hypervalent iodine reagents. Chem Commun (Camb) 2023; 59:1589-1604. [PMID: 36656618 PMCID: PMC9904279 DOI: 10.1039/d2cc06168f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
Although alkynes are one of the smallest functional groups, they are among the most versatile building blocks for organic chemistry, with applications ranging from biochemistry to material sciences. Alkynylation reactions have traditionally relied on the use of acetylenes as nucleophiles. The discovery and development of ethynyl hypervalent iodine reagents have allowed to greatly expand the transfer of alkynes as electrophilic synthons. In this feature article the progress in the field since 2018 will be presented. After a short introduction on alkynylation reactions and hypervalent iodine reagents, the developments in the synthesis of alkynyl hypervalent iodine reagents will be discussed. Their recent use in base-mediated and transition-metal catalyzed alkynylations will be described. Progress in radical-based alkynylations and atom-economical transformations will then be presented.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Shinde S, Inamdar S, Shinde M, Kushwaha N, Obakachi V, Girase P, Kushwaha B, Dhawan S, Kumar V, Karpoormath R. Recent advances and approaches in the metal-free synthesis of 1,3-oxazole derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2107432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Suraj Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Shaukatali Inamdar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Mahadev Shinde
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Narvadeshwar Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Vincent Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Pankaj Girase
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, South Africa
| |
Collapse
|
6
|
Li J, Zhou C, Liang H, Guo XQ, Chen LM, Kang TR. Direct One‐Pot Construction of Diaryl Thioethers and 1,3‐Diynes through a Copper(I)‐Catalyzed Reaction of λ3‐Iodanes with Thiophenols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Li
- Chengdu University School of Pharmacy CHINA
| | - Chuang Zhou
- Chengdu University School of Food and Biological Engineering CHINA
| | - Hong Liang
- Chengdu University School of Pharmacy CHINA
| | | | - Lian-Mei Chen
- Chengdu University School of Food and Biological Engineering CHINA
| | - Tai-Ran Kang
- Chengdu University School of Food and Biological Engineering No 1, SHIDA ROAD 610106 Chengdu CHINA
| |
Collapse
|
7
|
Wang Y, Chen X, Lin S, Gao H, Liu FX, Zhou Z, Yi W. Hexafluoroisopropanol (HFIP)-prompted rearrangement of N-phenoxysulfonamides for the direct assembly of ortho-sulfonamide phenols: A combined experimental and computational study. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Base-promoted relay reaction of heterocyclic ketene aminals with o-difluorobenzene derivatives for the highly site-selective synthesis of functionalized indoles. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Zhang L, Wang Z, Sun S, Ni S, Wen L, Li M. Metal‐Free
Catalyzed Cyclization of
N
‐Methoxybenzamides
to Construct Quaternary
Carbon‐Containing
Isoindolinones. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin‐Bao Zhang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Zi‐Chen Wang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Sheng‐Zheng Sun
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Shao‐Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou Guangdong 515063 China
| | - Li‐Rong Wen
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Ming Li
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| |
Collapse
|
10
|
Zhou J, Li ZH, Pan JL, Chen C, Ma XF, He Y, Ding TM, Zhang SY. DFT and experimental studies on Rh(III)-catalyzed dual directing-groups-assisted [3+2] annulation and ring-opening of N‑aryloxyacetamides with 1-(phenylethynyl)cycloalkanol. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Sun X, Guo XQ, Chen LM, Kang TR. Synthesis, Characterization of Spirocyclic λ 3 -Iodanes and Their Application to Prepare 4,1-Benzoxazepine-2,5-diones and 1,3-Diynes. Chemistry 2021; 27:4312-4316. [PMID: 33326645 DOI: 10.1002/chem.202005124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Indexed: 11/10/2022]
Abstract
Herein, a [3+2] cycloaddition of aza-oxyallylic cations with ethynylbenziodoxolones for synthesis of new λ3 -iodanes containing spirocyclic 4-oxazolidinone has been developed. This cyclic λ3 -iodanes display stability in air and excellent solubility in organic solvent. Using them as substrate, both the 4,1-benzoxazepine-2,5-diones and symmetrical 1,3-diynes derivatives were afforded in high yield under copper(I)-catalyzed conditions.
Collapse
Affiliation(s)
- Xu Sun
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China.,Collaborative Innovation Center of Tissue Repair Material of, Sichuan Province, College of Chemistry & Chemical Engineering, China West Normal University, Nanchong City, Sichuan, 637002, P. R. China
| | - Xiao-Qiang Guo
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China
| | - Lian-Mei Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China
| | - Tai-Ran Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China.,Collaborative Innovation Center of Tissue Repair Material of, Sichuan Province, College of Chemistry & Chemical Engineering, China West Normal University, Nanchong City, Sichuan, 637002, P. R. China
| |
Collapse
|
12
|
Dhawan S, Kumar V, Girase PS, Mokoena S, Karpoormath R. Recent Progress in Iodine‐Catalysed C−O/C−N Bond Formation of 1,3‐Oxazoles: A Comprehensive Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202003969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sanjeev Dhawan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Pankaj S. Girase
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Sithabile Mokoena
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
13
|
Chen K, Chen W, Chen F, Zhang H, Xu H, Zhou Z, Yi W. Synthesis of 2-aminobenzofurans via base-mediated [3 + 2] annulation of N-phenoxy amides with gem-difluoroalkenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00709b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient metal-free [3 + 2] annulation of N-phenoxy amides with gem-difluoroalkenes has been realized for the assembly of 2-aminobenzofuran derivatives with potent cytotoxicity against cancer cell lines and application potential for DELs.
Collapse
Affiliation(s)
- Kaifeng Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Fangyuan Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Haiman Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Huiying Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|
14
|
Zhu Y, Chen F, Cheng D, Chen Y, Zhao X, Wei W, Lu Y, Zhao J. Rhodium(III)-Catalyzed Alkenyl C-H Functionalization to Dienes and Allenes. Org Lett 2020; 22:8786-8790. [PMID: 33147030 DOI: 10.1021/acs.orglett.0c03126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An oxyacetamide-directed Rh(III)-catalyzed Z-type alkenyl C-H functionalization through a rare exo-rhodacyle intermediate is described, forming multisubstituted dienes and allenes. A variety of alkenes and propargylic carbonate coupling partners are suitable for this transformation with high regio- and stereoselectivity. The synthetic utility is demonstrated by the selective late-stage modification of the Z-type natural products as well as the synthesis of the unnatural β-amino acid.
Collapse
Affiliation(s)
- Yuelu Zhu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Feng Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Donghui Cheng
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ying Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| | - Yi Lu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| |
Collapse
|
15
|
Zhang B, Li X, Guo B, Du Y. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chem Commun (Camb) 2020; 56:14119-14136. [PMID: 33140751 DOI: 10.1039/d0cc05354f] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypervalent iodine reagents have been extensively employed in various types of oxidative organic reactions including oxidative coupling/cyclization, bifunctionalization of olefins and cyclopropane, C-H functionalization, and oxidative rearrangement reactions. In this review, the developments of the exclusive hypervalent iodine-mediated reactions involving oxidative rearrangement processes, including [1,2]-migration, Hofmann rearrangement, Beckmann rearrangement, ring contraction, ring expansion, [3,3]-sigmatropic/iodonium-Claisen rearrangement and some miscellaneous rearrangements, have been summarized.
Collapse
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | |
Collapse
|
16
|
Xiong F, Zuo Y, Song Y, Zhang L, Zhang X, Xu S, Ren Y. Synthesis of ortho-Phenolic Sulfilimines via an Intermolecular Sulfur Atom Transfer Cascade Reaction. Org Lett 2020; 22:3799-3803. [PMID: 32337987 DOI: 10.1021/acs.orglett.0c01032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To expand the toolbox for the synthesis of ortho-phenolic sulfilimines, sigmatropic rearrangements were introduced to the field of sulfilimine chemistry. Herein we report a N-H sulfenylation/[2,3]-sigmatropic rearrangement cascade reaction. This mild reaction enables commercially available thiols to serve as the sulfenylation reagent and generates water as the sole byproduct. Moreover, the reaction has a wide substrate scope and can be conducted on a gram scale with excellent reaction efficiency.
Collapse
Affiliation(s)
- Feng Xiong
- School of Life Sciences, Nanjing University, Nanjing 210093, China.,Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yingying Zuo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yinan Song
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Linxing Zhang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xinhao Zhang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shaojian Xu
- Hygiene Sector, Joint Laboratory for Infectious Disease Prevention and Control, Longhua District Center for Disease Control and Prevention, Shenzhen 518109, China
| | - Yan Ren
- Hygiene Sector, Joint Laboratory for Infectious Disease Prevention and Control, Longhua District Center for Disease Control and Prevention, Shenzhen 518109, China
| |
Collapse
|
17
|
Chen W, Liu FX, Bian M, Li L, Zhou Z, Yi W. Rh(III)-Catalyzed C-H Activation/Cycloisomerization of N-Phenoxyacetamides with Enynones for One-Pot Assembly of Furylated 2-Alkenylphenols. J Org Chem 2019; 84:15557-15566. [PMID: 31682117 DOI: 10.1021/acs.joc.9b02534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An efficient and practical procedure for one-pot assembly of furylated 2-alkenylphenols has been achieved via the Cp*CyRh-catalyzed regioselective redox-neutral C-H activation/5-exo-dig cyclization cascade using N-phenoxyacetamides and enynones as the viable substrates. The synthetic application of such a protocol has also been demonstrated to highlight the versatility of this transformation.
Collapse
Affiliation(s)
- Weijie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Fu-Xiaomin Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Mengyao Bian
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Liping Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
| |
Collapse
|
18
|
Pan JL, Liu TQ, Chen C, Li QZ, Jiang W, Ding TM, Yan ZQ, Zhu GD. Rhodium(iii)-catalysed cascade [3 + 2] annulation of N-aryloxyacetamides with 3-(hetero)arylpropiolic acids: synthesis of benzofuran-2(3H)-ones. Org Biomol Chem 2019; 17:8589-8600. [PMID: 31517383 DOI: 10.1039/c9ob01553a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a cascade [3 + 2] annulation of N-aryloxyacetamides with 3-(hetero)arylpropiolic acids affording benzofuran-2(3H)-ones via rhodium(iii)-catalyzed redox-neutral C-H functionalization/isomerization/lactonization using an internal oxidative directing group O-NHAc was achieved. This catalytic system provides a regio- and stereoselective approach to synthesize (Z)-3-(amino(aryl)methylene)benzofuran-2(3H)-ones with exclusive Z configuration selectivity, acceptable yields and good functional group tolerance. Preliminary investigations on ultraviolet-visible and fluorescence behaviors reveal that the annulation products may be applied as a promising fluorescent probe for sensing metal cations, especially for cerium (Ce3+).
Collapse
Affiliation(s)
- Jin-Long Pan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhu Y, Chen F, Zhao X, Yan D, Yong W, Zhao J. Cobalt(III)-Catalyzed Intermolecular Carboamination of Propiolates and Bicyclic Alkenes via Non-Annulative Redox-Neutral Coupling. Org Lett 2019; 21:5884-5888. [DOI: 10.1021/acs.orglett.9b02016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuelu Zhu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| | - Feng Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dingyuan Yan
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wanxiong Yong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| |
Collapse
|
20
|
Liu F, Chen W, Zhu G, Zhou Z, Gao H, Yi W. Metal‐Free [3,3]‐Sigmatropic Rearrangement/[3+2] Annulation Cascade of
N
‐Phenoxy Amides with Terminal Alkynes for the Diastereoselective Synthesis of
trans
‐Dihydrobenzofurans. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fu‐Xiaomin Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou Guangdong 511436 People's Republic of China
| | - Weijie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou Guangdong 511436 People's Republic of China
| | - Guoxun Zhu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou Guangdong 511436 People's Republic of China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou Guangdong 511436 People's Republic of China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou Guangdong 511436 People's Republic of China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou Guangdong 511436 People's Republic of China
| |
Collapse
|
21
|
Li M, Wang JH, Li W, Lin CD, Zhang LB, Wen LR. N-Phenoxyamides as Multitasking Reagents: Base-Controlled Selective Construction of Benzofurans or Dihydrobenzofuro[2,3-d]oxazoles. J Org Chem 2019; 84:8523-8530. [DOI: 10.1021/acs.joc.9b00858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jia-Hui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Cheng-Dong Lin
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
22
|
Li M, Li W, Lin CD, Wang JH, Wen LR. One Base for Two Shots: Metal-Free Substituent-Controlled Synthesis of Two Kinds of Oxadiazine Derivatives from Alkynylbenziodoxolones and Amidoximes. J Org Chem 2019; 84:6904-6915. [DOI: 10.1021/acs.joc.9b00659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Cheng-Dong Lin
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jia-Hui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
23
|
Pan JL, Liu C, Chen C, Liu TQ, Wang M, Sun Z, Zhang SY. Dual Directing-Groups-Assisted Redox-Neutral Annulation and Ring Opening of N-Aryloxyacetamides with 1-Alkynylcyclobutanols via Rhodium(III)-Catalyzed C–H/C–C Activations. Org Lett 2019; 21:2823-2827. [DOI: 10.1021/acs.orglett.9b00812] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin-Long Pan
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang Liu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chao Chen
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tuan-Qing Liu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Man Wang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhenliang Sun
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People’s Hospital South Campus, Shanghai 201499, China
| | - Shu-Yu Zhang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus & Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
24
|
Yuan WK, Zhu MH, Geng RS, Ren GY, Zhang LB, Wen LR, Li M. Construction of Benzofuran-3(2H)-one Scaffolds with a Quaternary Center via Rh/Co Relay Catalyzed C–H Functionalization/Annulation of N-Aryloxyacetamides and Propiolic Acids. Org Lett 2019; 21:1654-1658. [DOI: 10.1021/acs.orglett.9b00181] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Kui Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Ming-Hui Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Rui-Sen Geng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Guang-Yi Ren
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
25
|
Yuan WK, Sun SZ, Zhang LB, Wen LR, Li M. A concise construction of 4-alkynylquinazolines via [4 + 2] annulation of 4-alkynylbenzoxazinanones with acylhydroxamates under transition-metal-free conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00668k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A concise and highly efficient method for the construction of valuable 4-alkynylquinazolines under transition-metal-free conditions was developed via [4 + 2] annulation of 4-alkynylbenzoxazinanones with acylhydroxamates in good to excellent yields.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Sheng-Zheng Sun
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|