1
|
Meng QZ, Wang XZ, Dai HQ, Assani I, Zhang MT, Zhao PP, Li LF, Yin X, Qi J, Pan Y, Zhang LX, Xia XK. A gene cluster encoding a nonribosomal peptide synthetase-like enzyme catalyzes γ-aromatic butenolides. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:681-689. [PMID: 38329449 DOI: 10.1080/10286020.2024.2311150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Sea cucumber-derived fungi have attracted much attention due to their capacity to produce an incredible variety of secondary metabolites. Genome-wide information on Aspergillus micronesiensis H39 obtained using third-generation sequencing technology (PacBio-SMRT) showed that the strain contains nonribosomal peptide synthetase (NRPS)-like gene clusters, which aroused our interest in mining its secondary metabolites. 11 known compounds (1-11), including two γ-aromatic butenolides (γ-AB) and five cytochalasans, were isolated from A. micronesiensis H39. The structures of the compounds were determined by NMR and ESIMS, and comparison with those reported in the literature. From the perspective of biogenetic origins, the γ-butyrolactone core of compounds 1 and 2 was assembled by NRPS-like enzyme. All of the obtained compounds showed no inhibitory activity against drug-resistant bacteria and fungi, as well as compounds 1 and 2 had no anti-angiogenic activity against zebrafish.
Collapse
Affiliation(s)
- Qing-Zhou Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin-Zhu Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Huan-Qin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Israa Assani
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Meng-Ting Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Pei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Long-Fen Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jun Qi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Li-Xin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xue-Kui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
2
|
Skellam E, Rajendran S, Li L. Combinatorial biosynthesis for the engineering of novel fungal natural products. Commun Chem 2024; 7:89. [PMID: 38637654 PMCID: PMC11026467 DOI: 10.1038/s42004-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural products are small molecules synthesized by fungi, bacteria and plants, which historically have had a profound effect on human health and quality of life. These natural products have evolved over millions of years resulting in specific biological functions that may be of interest for pharmaceutical, agricultural, or nutraceutical use. Often natural products need to be structurally modified to make them suitable for specific applications. Combinatorial biosynthesis is a method to alter the composition of enzymes needed to synthesize a specific natural product resulting in structurally diversified molecules. In this review we discuss different approaches for combinatorial biosynthesis of natural products via engineering fungal enzymes and biosynthetic pathways. We highlight the biosynthetic knowledge gained from these studies and provide examples of new-to-nature bioactive molecules, including molecules synthesized using combinations of fungal and non-fungal enzymes.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
| | - Sanjeevan Rajendran
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Lei Li
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| |
Collapse
|
3
|
Li Y, Chen S. Structure modification of an antibiotic: by engineering the fusaricidin bio-synthetase A in Paenibacillus polymyxa. Front Microbiol 2023; 14:1239958. [PMID: 37822742 PMCID: PMC10562733 DOI: 10.3389/fmicb.2023.1239958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Fusaricidin, a lipopeptide antibiotic, is specifically produced by Paenibacillus polymyxa strains, which could strongly inhibit Fusarium species fungi. Fusaricidin bio-synthetase A (FusA) is composed of six modules and is essential for synthesizing the peptide moiety of fusaricidin. In this study, we confirmed the FusA of Paenibacillus polymyxa strain WLY78 involved in producing Fusaricidin LI-F07a. We constructed six engineered strains by deletion of each module within FusA from the genome of strain WLY78. One of the engineered strains is able to produce a novel compound that exhibits better antifungal activity than that of fusaricidin LI-F07a. This new compound, known as fusaricidin [ΔAla6] LI-F07a, has a molecular weight of 858. Our findings reveal that it exhibits a remarkable 1-fold increase in antifungal activity compared to previous fusaricidin, and the fermentation yield reaches ~55 mg/L. This research holds promising implications for plant protection against infections caused by Fusarium and Botrytis pathogen infection.
Collapse
Affiliation(s)
- Yunlong Li
- Chengdu NewSun Crop Science Co. Ltd., Chengdu, China
| | - Sanfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Seibold PS, Lawrinowitz S, Raztsou I, Gressler M, Arndt HD, Stallforth P, Hoffmeister D. Bifurcate evolution of quinone synthetases in basidiomycetes. Fungal Biol Biotechnol 2023; 10:14. [PMID: 37400920 PMCID: PMC10316625 DOI: 10.1186/s40694-023-00162-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The terphenylquinones represent an ecologically remarkable class of basidiomycete natural products as they serve as central precursors of pigments and compounds that impact on microbial consortia by modulating bacterial biofilms and motility. This study addressed the phylogenetic origin of the quinone synthetases that assemble the key terphenylquinones polyporic acid and atromentin. RESULTS The activity of the Hapalopilus rutilans synthetases HapA1, HapA2 and of Psilocybe cubensis PpaA1 were reconstituted in Aspergilli. Liquid chromatography and mass spectrometry of the culture extracts identified all three enzymes as polyporic acid synthetases. PpaA1 is unique in that it features a C-terminal, yet catalytically inactive dioxygenase domain. Combined with bioinformatics to reconstruct the phylogeny, our results demonstrate that basidiomycete polyporic acid and atromentin synthetases evolved independently, although they share an identical catalytic mechanism and release structurally very closely related products. A targeted amino acid replacement in the substrate binding pocket of the adenylation domains resulted in bifunctional synthetases producing both polyporic acid and atromentin. CONCLUSIONS Our results imply that quinone synthetases evolved twice independently in basidiomycetes, depending on the aromatic α-keto acid substrate. Furthermore, key amino acid residues for substrate specificity were identified and changed which led to a relaxed substrate profile. Therefore, our work lays the foundation for future targeted enzyme engineering.
Collapse
Affiliation(s)
- Paula Sophie Seibold
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Stefanie Lawrinowitz
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Ihar Raztsou
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Hans-Dieter Arndt
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Pierre Stallforth
- Department Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Department Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
5
|
Wang X, Jarmusch SA, Frisvad JC, Larsen TO. Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in Aspergillus section Nigri. Nat Prod Rep 2023; 40:237-274. [PMID: 35587705 DOI: 10.1039/d1np00074h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: up to the end of 2021Aspergilli are biosynthetically 'talented' micro-organisms and therefore the natural products community has continually been interested in the wealth of biosynthetic gene clusters (BGCs) encoding numerous secondary metabolites related to these fungi. With the rapid increase in sequenced fungal genomes combined with the continuous development of bioinformatics tools such as antiSMASH, linking new structures to unknown BGCs has become much easier when taking retro-biosynthetic considerations into account. On the other hand, in most cases it is not as straightforward to prove proposed biosynthetic pathways due to the lack of implemented genetic tools in a given fungal species. As a result, very few secondary metabolite biosynthetic pathways have been characterized even amongst some of the most well studied Aspergillus spp., section Nigri (black aspergilli). This review will cover all known biosynthetic compound families and their structural diversity known from black aspergilli. We have logically divided this into sub-sections describing major biosynthetic classes (polyketides, non-ribosomal peptides, terpenoids, meroterpenoids and hybrid biosynthesis). Importantly, we will focus the review on metabolites which have been firmly linked to their corresponding BGCs.
Collapse
Affiliation(s)
- Xinhui Wang
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Jens C Frisvad
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Thomas O Larsen
- DTU Bioengineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Tseng CC, Chen L, Lee C, Tu Z, Lin CH, Lin HC. Characterization and catalytic investigation of fungal single-module nonribosomal peptide synthetase in terpene-amino acid meroterpenoid biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad043. [PMID: 38049376 PMCID: PMC10720950 DOI: 10.1093/jimb/kuad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Hybrid natural products are compounds that originate from diverse biosynthetic pathways and undergo a conjugation process, which enables them to expand their chemical diversity and biological functionality. Terpene-amino acid meroterpenoids have garnered increasing attention in recent years, driven by the discovery of noteworthy examples such as the anthelmintic CJ-12662, the insecticidal paeciloxazine, and aculene A (1). In the biosynthesis of terpene-amino acid natural products, single-module nonribosomal peptide synthetases (NRPSs) have been identified to be involved in the esterification step, catalyzing the fusion of modified terpene and amino acid components. Despite prior investigations into these NRPSs through gene deletion or in vivo experiments, the enzymatic basis and mechanistic insights underlying this family of single-module NRPSs remain unclear. In this study, we performed biochemical characterization of AneB by in vitro characterization, molecular docking, and site-directed mutagenesis. The enzyme reaction analyses, performed with L-proline and daucane/nordaucane sesquiterpene substrates, revealed that AneB specifically esterifies the C10-OH of aculenes with L-proline. Notably, in contrast to ThmA in CJ-12662 biosynthesis, which exclusively recognizes oxygenated amorpha-4,11-diene sesquiterpenes for L-tryptophan transfer, AneB demonstrates broad substrate selectivity, including oxygenated amorpha-4,11-diene and 2-phenylethanol, resulting in the production of diverse unnatural prolyl compounds. Furthermore, site-directed mutagenesis experiments indicated the involvement of H794 and D798 in the esterification catalyzed by AneB. Lastly, domain swapping between AneB and ThmA unveiled that the A‒T domains of ThmA can be effectively harnessed by the C domain of AneB for L-tryptophan transfer, thus highlighting the potential of the C domain of AneB for generating various terpene-amino acid meroterpenoid derivatives. ONE-SENTENCE SUMMARY The enzymatic basis and mechanistic insights into AneB, a single-module NRPS, highlight its capacity to generate various terpene-amino acid meroterpenoid derivatives.
Collapse
Affiliation(s)
- Cheng-Chung Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- School of Pharmacy, National Taiwan University, Taipei 100, Taiwan R.O.C
| | - Li‐Xun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Chi‐Fang Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan R.O.C
- School of Pharmacy, National Taiwan University, Taipei 100, Taiwan R.O.C
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan R.O.C
| |
Collapse
|
7
|
Kirchgaessner L, Wurlitzer JM, Seibold PS, Rakhmanov M, Gressler M. A genetic tool to express long fungal biosynthetic genes. Fungal Biol Biotechnol 2023; 10:4. [PMID: 36726159 PMCID: PMC9893682 DOI: 10.1186/s40694-023-00152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Secondary metabolites (SMs) from mushroom-forming fungi (Basidiomycota) and early diverging fungi (EDF) such as Mucoromycota are scarcely investigated. In many cases, production of SMs is induced by unknown stress factors or is accompanied by seasonable developmental changes on fungal morphology. Moreover, many of these fungi are considered as non-culturable under laboratory conditions which impedes investigation into SM. In the post-genomic era, numerous novel SM genes have been identified especially from EDF. As most of them encode multi-module enzymes, these genes are usually long which limits cloning and heterologous expression in traditional hosts. RESULTS An expression system in Aspergillus niger is presented that is suitable for the production of SMs from both Basidiomycota and EDF. The akuB gene was deleted in the expression host A. niger ATNT∆pyrG, resulting in a deficient nonhomologous end-joining repair mechanism which in turn facilitates the targeted gene deletion via homologous recombination. The ∆akuB mutant tLK01 served as a platform to integrate overlapping DNA fragments of long SM genes into the fwnA locus required for the black pigmentation of conidia. This enables an easy discrimination of correct transformants by screening the transformation plates for fawn-colored colonies. Expression of the gene of interest (GOI) is induced dose-dependently by addition of doxycycline and is enhanced by the dual TetON/terrein synthase promoter system (ATNT) from Aspergillus terreus. We show that the 8 kb polyketide synthase gene lpaA from the basidiomycete Laetiporus sulphureus is correctly assembled from five overlapping DNA fragments and laetiporic acids are produced. In a second approach, we expressed the yet uncharacterized > 20 kb nonribosomal peptide synthetase gene calA from the EDF Mortierella alpina. Gene expression and subsequent LC-MS/MS analysis of mycelial extracts revealed the production of the antimycobacterial compound calpinactam. This is the first report on the heterologous production of a full-length SM multidomain enzyme from EDF. CONCLUSIONS The system allows the assembly, targeted integration and expression of genes of > 20 kb size in A. niger in one single step. The system is suitable for evolutionary distantly related SM genes from both Basidiomycota and EDF. This uncovers new SM resources including genetically intractable or non-culturable fungi.
Collapse
Affiliation(s)
- Leo Kirchgaessner
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.413047.50000 0001 0658 7859Faculty Medical Technology and Biotechnology, Ernst Abbe University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Jacob M. Wurlitzer
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Paula S. Seibold
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Malik Rakhmanov
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Markus Gressler
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| |
Collapse
|
8
|
Noriler S, Navarro-Muñoz JC, Glienke C, Collemare J. Evolutionary relationships of adenylation domains in fungi. Genomics 2022; 114:110525. [PMID: 36423773 DOI: 10.1016/j.ygeno.2022.110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and NRPS-like enzymes are abundant in microbes as they are involved in the production of primary and secondary metabolites. In contrast to the well-studied NRPSs, known to produce non-ribosomal peptides, NRPS-like enzymes exhibit more diverse activities and their evolutionary relationships are unclear. Here, we present the first in-depth phylogenetic analysis of fungal NRPS-like A domains from functionally characterized pathways, and their relationships to characterized A domains found in fungal NRPSs. This study clearly differentiated amino acid reductases, including NRPSs, from CoA/AMP ligases, which could be divided into 10 distinct phylogenetic clades that reflect their conserved domain organization, substrate specificity and enzymatic activity. In particular, evolutionary relationships of adenylate forming reductases could be refined and explained the substrate specificity difference. Consistent with their phylogeny, the deduced amino acid code of A domains differentiated amino acid reductases from other enzymes. However, a diagnostic code was found for α-keto acid reductases and clade 7 CoA/AMP ligases only. Comparative genomics of loci containing these enzymes revealed that they can be independently recruited as tailoring genes in diverse secondary metabolite pathways. Based on these results, we propose a refined and clear phylogeny-based classification of A domain-containing enzymes, which will provide a robust framework for future functional analyses and engineering of these enzymes to produce new bioactive molecules.
Collapse
Affiliation(s)
- Sandriele Noriler
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil
| | - Jorge C Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands
| | - Chirlei Glienke
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil; Postgraduate Program of Genetics, Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Lawrinowitz S, Wurlitzer JM, Weiss D, Arndt HD, Kothe E, Gressler M, Hoffmeister D. Blue Light-Dependent Pre-mRNA Splicing Controls Pigment Biosynthesis in the Mushroom Terana caerulea. Microbiol Spectr 2022; 10:e0106522. [PMID: 36094086 PMCID: PMC9603100 DOI: 10.1128/spectrum.01065-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 12/30/2022] Open
Abstract
Light induces the production of ink-blue pentacyclic natural products, the corticin pigments, in the cobalt crust mushroom Terana caerulea. Here, we describe the genetic locus for corticin biosynthesis and provide evidence for a light-dependent dual transcriptional/cotranscriptional regulatory mechanism. Light selectively induces the expression of the corA gene encoding the gateway enzyme, the first described mushroom polyporic acid synthetase CorA, while other biosynthetic genes for modifying enzymes necessary to complete corticin assembly are induced only at lower levels. The strongest corA induction was observed following exposure to blue and UV light. A second layer of regulation is provided by the light-dependent splicing of the three introns in the pre-mRNA of corA. Our results provide insight into the fundamental organization of how mushrooms regulate natural product biosynthesis. IMPORTANCE The regulation of natural product biosyntheses in mushrooms in response to environmental cues is poorly understood. We addressed this knowledge gap and chose the cobalt crust mushroom Terana caerulea as our model. Our work discovered a dual-level regulatory mechanism that connects light as an abiotic stimulus with a physiological response, i.e., the production of dark-blue pigments. Exposure to blue light elicits strongly increased transcription of the gene encoding the gateway enzyme, the polyporic acid synthetase CorA, that catalyzes the formation of the pigment core structure. Additionally, light is a prerequisite for the full splicing of corA pre-mRNA and, thus, its proper maturation. Dual transcriptional/cotranscriptional light-dependent control of fungal natural product biosynthesis has previously been unknown. As it allows the tight control of a key metabolic step, it may be a much more prevalent mechanism among these organisms.
Collapse
Affiliation(s)
- Stefanie Lawrinowitz
- Friedrich-Schiller-Universität Jena, Institute of Pharmacy, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Jacob M. Wurlitzer
- Friedrich-Schiller-Universität Jena, Institute of Pharmacy, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dieter Weiss
- Friedrich-Schiller-Universität Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Jena, Germany
| | - Erika Kothe
- Friedrich-Schiller-Universität Jena, Institute for Microbiology, Jena, Germany
| | - Markus Gressler
- Friedrich-Schiller-Universität Jena, Institute of Pharmacy, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Hoffmeister
- Friedrich-Schiller-Universität Jena, Institute of Pharmacy, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| |
Collapse
|
10
|
Fan H, Wei X, Si-Tu MX, Lei YH, Zhou FG, Zhang CX. γ-Aromatic Butenolides of Microbial Source - A Review of Their Structures, Biological Activities and Biosynthesis. Chem Biodivers 2022; 19:e202200208. [PMID: 35567462 DOI: 10.1002/cbdv.202200208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022]
Abstract
γ-Aromatic butenolides (γ-AB) are an important type of structures found in many bioactive microbial secondary metabolites (SMs). γ-AB refer to a group of natural products (NPs) containing five-membered (unsaturated) lactones with 3-phenyl and 4-benzyl substituents. Their wide-range biological activities have inspired pharmaceutical chemists to explore its biosynthesis mechanisms and design strategies to construct the γ-AB skeleton. Recently, there are a great deal of interesting research progress on the structures, biological activities and biosynthesis of γ-AB. This review will focus on these aspects and summarize the important achievements of γ-AB from 1975 to 2021.
Collapse
Affiliation(s)
- Hao Fan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Xia Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Mei-Xia Si-Tu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Yan-Hu Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Feng-Guo Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Wieder C, Peres da Silva R, Witts J, Jäger CM, Geib E, Brock M. Characterisation of ascocorynin biosynthesis in the purple jellydisc fungus Ascocoryne sarcoides. Fungal Biol Biotechnol 2022; 9:8. [PMID: 35477441 PMCID: PMC9047271 DOI: 10.1186/s40694-022-00138-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Non-ribosomal peptide synthetase-like (NRPS-like) enzymes are highly enriched in fungal genomes and can be discriminated into reducing and non-reducing enzymes. Non-reducing NRPS-like enzymes possess a C-terminal thioesterase domain that catalyses the condensation of two identical aromatic α-keto acids under the formation of enzyme-specific substrate-interconnecting core structures such as terphenylquinones, furanones, butyrolactones or dioxolanones. Ascocoryne sarcoides produces large quantities of ascocorynin, which structurally resembles a terphenylquinone produced from the condensation of p-hydroxyphenylpyruvate and phenylpyruvate. Since the parallel use of two different substrates by a non-reducing NRPS-like enzyme appeared as highly unusual, we investigated the biosynthesis of ascocorynin in A. sarcoides. Results Here, we searched the genome of A. sarcoides for genes coding for non-reducing NRPS-like enzymes. A single candidate gene was identified that was termed acyN. Heterologous gene expression confirmed that AcyN is involved in ascocorynin production but only produces the non-hydroxylated precursor polyporic acid. Although acyN is embedded in an ascocorynin biosynthesis gene cluster, a gene encoding a monooxygenase required for the hydroxylation of polyporic acid was not present. Expression analyses of all monooxygenase-encoding genes from A. sarcoides identified a single candidate that showed the same expression pattern as acyN. Accordingly, heterologous co-expression of acyN and the monooxygenase gene resulted in the production of ascocorynin. Structural modelling of the monooxygenase suggests that the hydrophobic substrate polyporic acid enters the monooxygenase from a membrane facing entry site and is converted into the more hydrophilic product ascocorynin, which prevents its re-entry for a second round of hydroxylation. Conclusion This study characterises the first naturally occurring polyporic acid synthetase from an ascomycete. It confirms the high substrate and product specificity of this non-reducing NRPS-like enzyme and highlights the requirement of a monooxygenase to produce the terphenylquinone ascocorynin. Supplementary Information The online version contains supplementary material available at 10.1186/s40694-022-00138-7.
Collapse
Affiliation(s)
- Carsten Wieder
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,Institute of Molecular Physiology, Johannes-Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Roberta Peres da Silva
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Jessica Witts
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Christof Martin Jäger
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Geib
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthias Brock
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
12
|
Tietze A, Shi YN, Kronenwerth M, Bode HB. Nonribosomal Peptides Produced by Minimal and Engineered Synthetases with Terminal Reductase Domains. Chembiochem 2020; 21:2750-2754. [PMID: 32378773 PMCID: PMC7586950 DOI: 10.1002/cbic.202000176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) use terminal reductase domains for 2‐electron reduction of the enzyme‐bound thioester releasing the generated peptides as C‐terminal aldehydes. Herein, we reveal the biosynthesis of a pyrazine that originates from an aldehyde‐generating minimal NRPS termed ATRed in entomopathogenic Xenorhabdus indica. Reductase domains were also investigated in terms of NRPS engineering and, although no general applicable approach was deduced, we show that they can indeed be used for the production of similar natural and unnatural pyrazinones.
Collapse
Affiliation(s)
- Andreas Tietze
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Yan-Ni Shi
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Max Kronenwerth
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Fachbereich Biowissenschaften, Molekulare Biotechnologie, Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, 60438, Frankfurt am Main, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany
| |
Collapse
|
13
|
Hai Y, Jenner M, Tang Y. Complete Stereoinversion of l-Tryptophan by a Fungal Single-Module Nonribosomal Peptide Synthetase. J Am Chem Soc 2019; 141:16222-16226. [PMID: 31573806 DOI: 10.1021/jacs.9b08898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Single-module nonribosomal peptide synthetases (NRPSs) and NRPS-like enzymes activate and transform carboxylic acids in both primary and secondary metabolism and are of great interest due to their biocatalytic potentials. The single-module NRPS IvoA is essential for fungal pigment biosynthesis. Here, we show that IvoA catalyzes ATP-dependent unidirectional stereoinversion of l-tryptophan to d-tryptophan with complete conversion. While the stereoinversion is catalyzed by the epimerization (E) domain, the terminal condensation (C) domain stereoselectively hydrolyzes d-tryptophanyl-S-phosphopantetheine thioester and thus represents a noncanonical C domain function. Using IvoA, we demonstrate a biocatalytic stereoinversion/deracemization route to access a variety of substituted d-tryptophan analogs in high enantiomeric excess.
Collapse
Affiliation(s)
| | - Matthew Jenner
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom.,Warwick Integrative Synthetic Biology (WISB) Centre , University of Warwick , Coventry CV4 7AL , United Kingdom
| | | |
Collapse
|
14
|
Ariantari NP, Daletos G, Mándi A, Kurtán T, Müller WEG, Lin W, Ancheeva E, Proksch P. Expanding the chemical diversity of an endophytic fungus Bulgaria inquinans, an ascomycete associated with mistletoe, through an OSMAC approach. RSC Adv 2019; 9:25119-25132. [PMID: 35528664 PMCID: PMC9069884 DOI: 10.1039/c9ra03678d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
An endophytic fungus Bulgaria inquinans (isolate MSp3-1), isolated from mistletoe (Viscum album), was subjected to fermentation on solid Czapek medium. Chromatographic workup of the crude EtOAc extract yielded five new natural products (1–5). Subsequent application of the “One Strain, MAny Compounds” (OSMAC) strategy on this strain by the addition of a mixture of salts (MgSO4, NaNO3 and NaCl) to solid Czapek medium induced the accumulation of nine additional new secondary metabolites (6–13, 16), with most of them (8, 10–12) not detectable in cultures lacking the salt mixture. The structures of the new compounds were established on the basis of the 1D/2D NMR and HRESIMS data. The TDDFT-ECD method was applied to determine the absolute configurations of the new compounds 1, 4 and 6 as well as of the previously reported bulgarialactone B (14), for which the absolute configuration was unknown so far. The modified Mosher's method was performed to assign the absolute configurations of 12 and 13. TDDFT-ECD analysis also allowed determining the absolute configuration of (+)-epicocconone, which had an enantiomeric absolute configuration in the tricyclic moiety compared to that of bulgarialactone B (14). All the isolated metabolites were evaluated for their cytotoxic activity. Compound 2 was found to possess strong cytotoxic activity against the murine lymphoma cell line L5178Y with an IC50 value of 1.8 μM, while the remaining metabolites were shown to be inactive. OSMAC approach on endophytic Bulgaria inquinans by addition of a mixture of salts (MgSO4, NaNO3 and NaCl) to solid Czapek medium induced the accumulation of new secondary metabolites.![]()
Collapse
Affiliation(s)
- Ni P. Ariantari
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
- Department of Pharmacy
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Attila Mándi
- Department of Organic Chemistry
- University of Debrecen
- 4002 Debrecen
- Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry
- University of Debrecen
- 4002 Debrecen
- Hungary
| | - Werner E. G. Müller
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- 100191 Beijing
- China
| | - Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|