1
|
Franc M, Měrka P, Císařová I, Veselý J. Enantioselective Preparation of Cyclopentene-Based Amino Acids with a Quaternary Carbon Center. J Org Chem 2024. [PMID: 39471381 DOI: 10.1021/acs.joc.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Azlactone is an important starting material for synthesizing amino acids containing a quaternary α-carbon. In this study, we have developed a sequential "one-pot" procedure involving an enantioselective spirocyclization reaction followed by acidic azlactone opening, which led to amino acid derivatives. The key step of this procedure is a spirocyclization between propargylated azlactones and enals by using a cooperative catalytic approach that combines chiral secondary amine and achiral Pd(0) complexes. The final acid opening of the azlactone motif allows isolation of the corresponding amino acid derivatives as major diastereoisomers in yields ranging from 37% to 70% with enantioselectivities of 85-97% ee. These synthesized amino acid derivatives hold great potential in the pharmaceutical and bioactive compound industries. Moreover, the final amino acid products with a cyclopentene moiety can be further derivatized, opening up even more possibilities for their application.
Collapse
Affiliation(s)
- Michael Franc
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| | - Pavel Měrka
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| |
Collapse
|
2
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
3
|
Woldegiorgis AG, Mustafai A, Muhammad FY, Farooqi R, Tolesa LD, Aimun K. Stereoselective Synthesis of Axially Chiral Allenes and Styrenes via Chiral Phosphoric Acid Catalysis: An Overview. ACS OMEGA 2024; 9:33351-33364. [PMID: 39130561 PMCID: PMC11307311 DOI: 10.1021/acsomega.4c04206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Chiral allenes and styrenes are essential components in fields like medicinal chemistry, materials science, and organic synthesis. They serve a crucial role as chiral ligands and catalysts in asymmetric synthesis. Over the past decade, there has been a significant advancement in the development of practical methods utilizing organocatalytic strategies for the synthesis of chiral allenes and styrenes. It is noteworthy that despite extensive studies on the formation of allenes and styrenes, existing reviews on their construction confined to a specific organocatalysis, called chiral phosphoric acid catalysis, are less documented. This review aims to explore different conceptual approaches based on the electrophilic species involved in the reaction to produce stereoselective chiral allenes and styrenes, providing insights into recent advancements in the field. Emphasis is placed on works published since 2017, with detailed discussions on reaction mechanisms and examples from recent literature.
Collapse
Affiliation(s)
| | - Aleena Mustafai
- Bahauddin
Zakariya University, Institute of Chemical
Sciences, Multan 60800, Pakistan
| | - Faisal Yasin Muhammad
- Government
College University Faisalabad, Department of Chemistry, P.O. Box: 38000, Faisalabad 38040, Pakistan
| | - Rehmatullah Farooqi
- Bahauddin
Zakariya University, Institute of Chemical
Sciences, Multan 60800, Pakistan
| | - Leta Deressa Tolesa
- Adama
Science and Technology University, School of Applied Natural Science, P.O. Box: 1888, Adama 1000, Ethiopia
| | - Khadija Aimun
- Government
College University Faisalabad, Department of Chemistry, P.O. Box: 38000, Faisalabad 38040, Pakistan
| |
Collapse
|
4
|
Wang X, Shen B, Liu M, Wang Z, Liu C, Li P, Yu P, Li W. Organocatalytic Enantioselective 1,12-Addition of Alkynyl Biphenyl Quinone Methides Formed In Situ. Angew Chem Int Ed Engl 2024; 63:e202400143. [PMID: 38698663 DOI: 10.1002/anie.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
The chemistry of quinone methides formed in situ has been flourishing in recent years. In sharp contrast, the development and utilization of biphenyl quinone methides are rare. In this study, we achieved a remote stereocontrolled 1,12-conjugate addition of biphenyl quinone methides formed in situ for the first time. In the presence of a suitable chiral phosphoric acid, alkynyl biphenyl quinone methides were generated from α-[4-(4-hydroxyphenyl)phenyl]propargyl alcohols, followed by enantioselective 1,12-conjugate addition with indole-2-carboxylates. The strategy enabled the alcohols to serve as efficient allenylation reagents, providing practical access to a broad range of axially chiral allenes bearing a (1,1'-biphenyl)-4-ol unit, which were previously less accessible. Combined with control experiments, density functional theory calculations shed light on the reaction mechanism, indicating that enantioselectivity originates from the nucleophilic addition of alkynyl biphenyl quinone methides. Notably, not only the presence of biphenyl quinone methides as versatile intermediates was confirmed but also organocatalytic enantioselective 1,12-addition was established.
Collapse
Affiliation(s)
- Xing Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266021, China
| | - Boming Shen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Meiwen Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Ziyang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266021, China
| | - Chang Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Peiyuan Yu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266021, China
| |
Collapse
|
5
|
Liu G, Yang X, Gu P, Wang M, Zhang X, Dong XQ. Challenging Task of Ni-Catalyzed Highly Regio-/Enantioselective Semihydrogenation of Racemic Tetrasubstituted Allenes via a Kinetic Resolution Process. J Am Chem Soc 2024; 146:7419-7430. [PMID: 38447583 DOI: 10.1021/jacs.3c12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The first earth-abundant transition metal Ni-catalyzed highly regio- and enantioselective semihydrogenation of racemic tetrasubstituted allenes via a kinetic resolution process as a challenging task was well established. This protocol furnishes expedient access to a diversity of structurally important enantioenriched tetrasubstituted allenes and chiral allylic molecules with high regio-, enantio-, and Z/E-selectivity. Remarkably, this semihydrogenation proceeded with one carbon-carbon double bond of allenes, which was regioselective complementary to the Rh-catalyzed asymmetric version. Deuterium labeling experiments and density functional theory (DFT) calculations were carried out to reveal the reasonable reaction mechanism and explain the regio-/stereoselectivity.
Collapse
Affiliation(s)
- Gang Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xuanliang Yang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Pei Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Xumu Zhang
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518000, Guangdong, P. R. China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
6
|
Wang J, Zheng WF, Zhang X, Qian H, Ma S. Stereoselectivity control in Rh-catalyzed β-OH elimination for chiral allene formation. Nat Commun 2023; 14:7399. [PMID: 37968338 PMCID: PMC10651921 DOI: 10.1038/s41467-023-42660-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2023] [Indexed: 11/17/2023] Open
Abstract
Stereoselectivity control and understanding in the metal-catalyzed reactions are fundamental issues in catalysis. Here we report sterically controlled rhodium-catalyzed SN2'-type substitution reactions of optically active tertiary propargylic alcohols with arylmetallic species affording the non-readily available enantioenriched tetrasubstituted allenes via either exclusive syn- or anti-β-OH elimination, respectively, under two sets of different reaction parameters. Detailed mechanistic experiments and density functional theory (DFT) studies reveal that the exclusive anti-Rh(I)-OH elimination is dictated by the simultaneous aid of in situ generated boric acid and ambient water, which act as the shuttle in the hydroxy relay to facilitate the Rh(I)-OH elimination process via a unique ten-membered cyclic transition state (anti-TS2_u). By contrast, the syn-Rh(III)-OH elimination in C-H bond activation-based allenylation reaction is controlled by a four-membered cyclic transition state (syn-TS3) due to the steric surroundings around the Rh(III) center preventing the approach of the other assisting molecules. Under the guidance of these mechanistic understandings, a stereodivergent protocol to construct the enantiomer of optically active tetrasubstituted allenes from the same starting materials is successfully developed.
Collapse
Affiliation(s)
- Jie Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Xue Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, PR China.
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, PR China.
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai, 200433, PR China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, PR China.
| |
Collapse
|
7
|
Liu LX, Huang WJ, Yu CB, Zhou YG. Palladium-catalyzed stereoselective construction of chiral allenes bearing nonadjacent axial and two central chirality. Org Biomol Chem 2023; 21:8516-8520. [PMID: 37853833 DOI: 10.1039/d3ob01315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
It is challenging to enantioselectively construct molecules bearing multiple nonadjacent stereocenters, in contrast to those bearing a single stereocenter or adjacent stereocenters. Herein, we report an enantio- and diastereoselective synthesis of substituted chiral allenes with nonadjacent axial and two central chiral centers through a combination of retro-oxa-Michael addition and palladium-catalyzed asymmetric allenylic alkylation. This methodology exhibits good functional-group compatibility, and the corresponding allenylic alkylated compounds, including flavonoid frameworks, are obtained with good yields and diastereoselectivities and excellent enantioselectivities (all >95% ee). Furthermore, the scalability of the current synthetic protocol was proven by performing a gram-scale reaction.
Collapse
Affiliation(s)
- Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
8
|
Zhu ZQ, Wu TF, Pan HP, Peng JB, Ma AJ, Zhang XZ. Bismuth(III)-Catalyzed 1,8-Addition/Cyclization/Rearrangement of Propargylic para-Quinone Methides with 2-Vinylphenol: Synthesis of Indeno[2,1- c]chromenes. Org Lett 2023. [PMID: 36808990 DOI: 10.1021/acs.orglett.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The unique reactivity of in situ generated propargylic para-quinone methides as a new type of five-carbon synthon has been discovered by a novel bismuth(III)-catalyzed tandem annulation reaction. This 1,8-addition/cyclization/rearrangement cyclization cascade reaction is characterized by unusual structural reconstruction of 2-vinylphenol, involving cleavage of the C1'═C2' bond and formation of four new bonds. This method provides a convenient and mild approach to generate synthetically important functionalized indeno[2,1-c]chromenes. The mechanism of the reaction is proposed from several control experiments.
Collapse
Affiliation(s)
- Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Teng-Fei Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
9
|
Wu P, Yu L, Gao CH, Cheng Q, Deng S, Jiao Y, Tan W, Shi F. Design and synthesis of axially chiral aryl-pyrroloindoles via the strategy of organocatalytic asymmetric (2 + 3) cyclization. FUNDAMENTAL RESEARCH 2023; 3:237-248. [PMID: 38932922 PMCID: PMC11197731 DOI: 10.1016/j.fmre.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
The catalytic asymmetric construction of axially chiral indole-based frameworks is an important area of research due to the unique characteristics of such frameworks. Nevertheless, research in this area is still in its infancy and has some challenges, such as designing and constructing new classes of axially chiral indole-based scaffolds and developing their applications in chiral catalysts, ligands, etc. To overcome these challenges, we present herein the design and atroposelective synthesis of aryl-pyrroloindoles as a new class of axially chiral indole-based scaffolds via the strategy of organocatalytic asymmetric (2 + 3) cyclization between 3-arylindoles and propargylic alcohols. More importantly, this new class of axially chiral scaffolds was derived into phosphines, which served as efficient chiral ligands in palladium-catalyzed asymmetric reactions. Moreover, theoretical calculations provided an in-depth understanding of the reaction mechanism. This work offers a new strategy for constructing axially chiral indole-based scaffolds, which are promising for finding more applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Lei Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qi Cheng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuang Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
10
|
Wang Y, Wang B, Ren Z, Guan Z. Copper‐Catalyzed Synthesis of β‐Alkynyl Ketones from Propargylic Alcohols and Enamides. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yucheng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| | - Bo Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| | - Zhihui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| | - Zheng‐Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University 710069 Xi'an P. R. China
| |
Collapse
|
11
|
Wang G, Li L, Jiang Y, Zhao X, Ban X, Shao T, Yin Y, Jiang Z. Kinetic Resolution of Azaarylethynyl Tertiary Alcohols by Chiral Brønsted Acid Catalysed Phosphine-Mediated Deoxygenation. Angew Chem Int Ed Engl 2023; 62:e202214838. [PMID: 36412539 DOI: 10.1002/anie.202214838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
A chiral Brønsted acid catalysed phosphine-mediated deoxygenation protocol is reported. This metal-free method provides a precise kinetic resolution platform for azaarylethynyl tertiary alcohols, which are a broad category of biologically and synthetically important azaarene derivatives. In addition to providing an efficient method for the first asymmetric preparation of these tertiary alcohols, the strategy facilitates the construction of azaaryl-functionalized allenes with good to excellent enantioselectivities. The high selectivity factors (s up to 235), broad substrate scope, and ability to convert azaaryl compounds into both chiral tertiary alcohols and allenes robustly underscore the efficiency and promising utility of this method. The practicability is further validated by the successful synthesis of deuterated allenes with high ee values and substantial incorporation of deuterium using inexpensive D2 O as the deuterium source.
Collapse
Affiliation(s)
- Guanghui Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Lulu Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yifeng Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xiaowei Zhao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Tianju Shao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.,College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, P. R. China
| | - Zhiyong Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.,International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
12
|
Nguyen TT. Organocatalytic synthesis of axially chiral tetrasubstituted allenes. Org Biomol Chem 2023; 21:252-272. [PMID: 36504200 DOI: 10.1039/d2ob01794f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asymmetric organocatalysis is a growing method for the synthesis of axially chiral tetrasubstituted allenes, the most challenging one among allene syntheses. In this method, chiral organocatalysts such as phase-transfer catalysts, peptides, disulfonimides, and binaphthyl/bispiro phosphoric acids have displayed remote control of regio- and stereoselectivity. Highly functionalized enantiopure allenes including those with an adjacent tertiary or quaternary stereocenter have been efficiently prepared with high levels of regio-, diastereo-, and enantioselectivity using this method. Several mechanistic pathways, including electrophilic addition to cumulenolate or zwitterionic enolate intermediates, alkynylogous Mukaiyama aldol reaction, nucleophilic addition to quinone methides, and dearomative addition to imino esters, were proposed. The method is necessary for providing access to axially chiral tetrasubstituted allenes, which can be utilized for the preparation of novel ligands, natural products, and organic materials, particularly those having complex structures. This review covers the enantioselective organocatalytic synthesis of these tetrasubstituted allenes and the mechanistic insights into the formation of the chiral axis up to July 2022.
Collapse
Affiliation(s)
- Thien T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam. .,Faculty of Pharmacy, College of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
13
|
da Silva EM, Vidal HDA, Januário MAP, Corrêa AG. Advances in the Asymmetric Synthesis of BINOL Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010012. [PMID: 36615207 PMCID: PMC9821997 DOI: 10.3390/molecules28010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BINOL derivatives have shown relevant biological activities and are important chiral ligands and catalysts. Due to these properties, their asymmetric synthesis has attracted the interest of the scientific community. In this work, we present an overview of the most efficient methods to obtain chiral BINOLs, highlighting the use of metal complexes and organocatalysts as well as kinetic resolution. Further derivatizations of BINOLs are also discussed.
Collapse
|
14
|
Wang HQ, Wu SF, Yang JR, Zhang YC, Shi F. Design and Organocatalytic Asymmetric Synthesis of Indolyl-Pyrroloindoles Bearing Both Axial and Central Chirality. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Hai-Qing Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shu-Fang Wu
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jun-Ru Yang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Qian C, Huang T, Sun J, Li P. Catalyst-Controlled Divergent Reactions of 2,3-Disubstituted Indoles with Propargylic Alcohols: Synthesis of 3 H-Benzo[ b]azepines and Axially Chiral Tetrasubstituted Allenes. Org Lett 2022; 24:6472-6476. [PMID: 36040372 DOI: 10.1021/acs.orglett.2c02642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Catalyst-controlled divergent reactions of 2,3-disubstituted indoles with propargylic alcohols were developed for the first time. In the presence of TsOH or B(C6F5)3 as catalyst, 2,3-disubstituted indoles reacted smoothly with 3-alkynyl-3-hydroxyisoindolinones to afford 3H-benzo[b]azepines by selective C2(sp2)-C3(sp2) ring expansion of indoles. In contrast, decreasing the catalyst strength (e.g., with chiral phosphoric acid) interrupted the cascade reactions, affording axially chiral tetrasubstituted allenes bearing an adjacent chiral quaternary carbon stereocenter. Control experiments provided insights into the reaction mechanism.
Collapse
Affiliation(s)
- Chenxiao Qian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Tingting Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
16
|
Wang Z, Cheng Y, Yue Z, Chen X, Li P, Li W. Organocatalytic Asymmetric 3‐Allenylation of Indoles via Remote Stereocontrolled 1,10‐Additions of Alkynyl Indole Imine Methides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ziyang Wang
- Qingdao University Department of Chemistry Qingdao CHINA
| | - Yuyu Cheng
- Southern University of Science and Technology Department of Chemistry Shenzhen CHINA
| | - Zhibin Yue
- Qingdao University Department of Chemistry Qingdao CHINA
| | - Xuling Chen
- Southern University of Science and Technology Department of Chemistry Shenzhen CHINA
| | - Pengfei Li
- Southern University of Science and Technology Department of Chemistry 1088 Xueyuan Blvd., Nanshan district 518055 Shenzhen CHINA
| | - Wenjun Li
- Qingdao University Department of Chemistry Qingdao CHINA
| |
Collapse
|
17
|
Lin X, Shen B, Wang Z, Cheng Y, Chen X, Li P, Yu P, Li W. Organocatalytic Enantioselective 1,10-Addition of Alkynyl Indole Imine Methides with Thiazolones: An Access to Axially Chiral Tetrasubstituted Allenes. Org Lett 2022; 24:4914-4918. [PMID: 35770873 DOI: 10.1021/acs.orglett.2c01794] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An asymmetric organocatalytic remote 1,10-addition of alkynyl indole imine methides generated in situ from α-(6-indolyl) propargylic alcohols with thiazolones has been developed for the first time, affording axially chiral tetrasubstituted allenes featuring vicinal sulfur-containing quaternary carbon stereocenters in high yields with excellent stereoselectivities. The representative scale-up reaction and transformations of the 1,10-adduct were examined. The reaction mechanism was expounded by control experiments and DFT calculations.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Boming Shen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziyang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yuyu Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| |
Collapse
|
18
|
Wang X, Chen X, Lin W, Li P, Li W. Recent Advances in Organocatalytic Enantioselective Synthesis of Axially Chiral Allenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xing Wang
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
| | - Wei Lin
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology 1088 Xueyuan Blvd., Nanshan District Shenzhen Guangdong 518055 People's Republic of China
| | - Wenjun Li
- Department of Medicinal Chemistry School of Pharmacy Qingdao University 308 Ningxia Road Qingdao Shandong 266021 People's Republic of China
| |
Collapse
|
19
|
Wang X, Song Q, Chen X, Li P, Qi Y, Li W. Organocatalytic Regio- and Enantioselective aza-1,8-Conjugate Additions of Isoxazol-5(4 H)-ones to 6-Methide-6 H-indoles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Qian C, Liu M, Sun J, Li P. Chiral phosphoric acid-catalyzed regio- and enantioselective reactions of functionalized propargylic alcohols. Org Chem Front 2022. [DOI: 10.1039/d1qo01864g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chiral phosphoric acid has been utilized for covalent activation of propargylic alcohols to act as pre-catalyst. With this activation mode, a range of highly regio- and enantioenriched heterocyclic products could be generated efficiently from racemic propargylic alcohols.
Collapse
Affiliation(s)
- Chenxiao Qian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Meiwen Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
21
|
Wu Y, Yue Z, Qian C, Chen X, Li F, Li P, Li W. Organocatalytic Enantioselective Construction of Axially Chiral Tetrasubstituted Allenes via 1,6‐Addition of Alkynyl Indole Imine Methides with 2‐Substituted Indoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yu Wu
- Department of Medicinal Chemistry, School of Pharmacy Qingdao University Qingdao Shandong 266021 P. R. China
| | - Zhibin Yue
- Department of Medicinal Chemistry, School of Pharmacy Qingdao University Qingdao Shandong 266021 P. R. China
| | - Chenxiao Qian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Fushuai Li
- Department of Medicinal Chemistry, School of Pharmacy Qingdao University Qingdao Shandong 266021 P. R. China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis College of Science Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy Qingdao University Qingdao Shandong 266021 P. R. China
| |
Collapse
|
22
|
Pan HP, Zhu ZQ, Qiu ZW, Liu HF, Ma JD, Li BQ, Feng N, Ma AJ, Peng JB, Zhang XZ. Dearomatization of 2,3-Disubstituted Indoles via 1,8-Addition of Propargylic (Aza)- para-Quinone Methides. J Org Chem 2021; 86:16518-16534. [PMID: 34714074 DOI: 10.1021/acs.joc.1c01857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dearomatization of indole is a useful strategy to access indolimines: a motif widely exists in biologically active molecules and natural products. Herein, an efficient method for the dearomatization of 2,3-disubstituted indoles to generate diverse indolimines with tetrasubstituted allenes is described. This work accomplishes dearomatization of 2,3-disubstituted indoles through 1,8-addition of (aza)-para-quinone methides, which are generated in situ from propargylic alcohols. A series of synthetically useful indolimines containing quaternary carbon centers and tetrasubstituted allenes can be accessed in good yields (up to 99%). Additionally, the separability of product isomers, diversified product transformations, and easy scale-up of the reaction demonstrate the potential application of this method.
Collapse
Affiliation(s)
- Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jiong-Dong Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
23
|
Woldegiorgis AG, Lin X. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein J Org Chem 2021; 17:2729-2764. [PMID: 34876929 PMCID: PMC8609246 DOI: 10.3762/bjoc.17.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, the synthesis of axially chiral compounds has received considerable attention due to their extensive application as biologically active compounds in medicinal chemistry and as chiral ligands in asymmetric catalysis. Chiral phosphoric acids are recognized as efficient organocatalysts for a variety of enantioselective transformations. In this review, we summarize the recent development of chiral phosphoric acid-catalyzed synthesis of a wide range of axially chiral biaryls, heterobiaryls, vinylarenes, N-arylamines, spiranes, and allenes with high efficiency and excellent stereoselectivity.
Collapse
Affiliation(s)
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
24
|
Kaur J, Preet Kaur B, Islam N, Chauhan P, Singh Chimni S. Stereoselective Mannich Reaction of
α
‐Acetoxy‐
β
‐keto Esters with Isatin Imine: An Efficient Access to Vicinal Tetra‐Substituted Stereocenters. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jasneet Kaur
- Department of Chemistry Khalsa College Amritsar 143001 India
| | - Banni Preet Kaur
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry Guru Nanak Dev University Amritsar 143005 India
| | - Nasarul Islam
- Department of Chemistry, Govt. Degree College Bandipora 193502 India
| | - Pankaj Chauhan
- Department of Chemistry Indian Institute of Technology Jammu, Jagti PO Nagrota, NH-44 Jammu 181 221 India
| | - Swapandeep Singh Chimni
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry Guru Nanak Dev University Amritsar 143005 India
| |
Collapse
|
25
|
Xiong T, Yuan H, Yang F, Jiang J. Brønsted acid-catalyzed 1,6-hydrophosphination of propargylic para-quinone methides and aza-para-quinone methides for the rapid construction of phosphorus-substituted quaternary carbon centers. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
26
|
Roy D, Tharra P, Baire B. An Approach for the Generation of γ-Propenylidene-γ-butenolides and Application to the Total Synthesis of Rubrolides. Org Lett 2021; 23:5605-5610. [PMID: 34259007 DOI: 10.1021/acs.orglett.1c01529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Design and synthesis of a new class of γ-butenolides, viz. β-aryl-γ-propenylidene-γ-butenolides, have been reported from β-aryl-Z-enoate propargylic alcohols in the presence of acid. Isolation of β-aryl-γ-propenylidene-γ-butenolides and their O18-isomer confirmed the intermediacy of the allenyl-lactonium ion as well as the cyclic-hemiacetal during the proposed mechanism. By utilizing the β-aryl-γ-methylenecyclohexenylidene-γ-butenolides as starting materials, a highly stereoselective and efficient approach has been developed for the syntheses of frameworks of rubrolide natural products. This strategy was further extended for the total synthesis of rubrolide E.
Collapse
Affiliation(s)
- Debayan Roy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Prabhakararao Tharra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
27
|
Song L, Ni D, Han W, Tang J, Yang F, Liu S. FeTPPCl/FeCl 3 Co-Catalyzed One-Pot Green Synthesis of α-Diaryl-β-alkynol Derivatives via Propargylic Carbocation Chemistry. J Org Chem 2021; 86:9306-9316. [PMID: 34228462 DOI: 10.1021/acs.joc.1c00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A green and highly efficient one-pot method for α-diaryl-β-alkynol derivatives in water at room temperature was developed using the cocatalysis of a Lewis acid and meso-tetraphenylporphyrin iron(III) chloride (FeTPPCl). The unprecedented transformation was promoted by a modulation of the charge properties of propargylic carbocation chemistry and the use of an in situ-generated oxonium ylide as a matching nucleophile. The reaction was performed in water at room temperature with a highly step-economic manipulation in good to excellent yields and with a broad substrate scope. Water also acts as the third reactant for the one-pot transformation. Notably, the FeTPPCl catalyst can be directly reused four times with a slight discount in yields.
Collapse
Affiliation(s)
- Longlong Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Ni
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wangyujing Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
28
|
Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Access to Allene‐Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yongtao Xie
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Huifang Chai
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Hongxia Liu
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Jun Song
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Yuan Gao
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
29
|
Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Access to Allene-Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angew Chem Int Ed Engl 2021; 60:14817-14823. [PMID: 33834597 DOI: 10.1002/anie.202102177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Indexed: 12/17/2022]
Abstract
Azolium cumulenolates are a special type of intermediates in N-heterocyclic carbene catalysis. They contain elongated linear structures with three contiguous C=C bonds and sterically unhindered α-carbon atoms. These structural features make it difficult to develop enantioselective reactions for these intermediates. Here we disclose the first carbene-catalyzed highly enantioselective addition reactions of azolium cumulenolates. The reaction starts with alkynals as the precursors for azolium cumulenolate intermediates that undergo enantioselective addition to activated ketones. From the same set of substrates, both allene and spirooxindole products can be obtained with high yields and excellent enantioselectivities. The allene moieties in our optically enriched products carry rich reactivities and can be transformed to diverse molecules. The spirooxindole scaffolds in our products are important structural motifs in natural products and medicines.
Collapse
Affiliation(s)
- Yongtao Xie
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Huifang Chai
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongxia Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Song
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Gao
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
30
|
Zheng G, Li X, Cheng JP. Access to Axially and Centrally Chiral Sulfinamides via Asymmetric Allylic Alkylation. Org Lett 2021; 23:3997-4001. [PMID: 33955766 DOI: 10.1021/acs.orglett.1c01201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, access to axially and centrally chiral sulfinamides via asymmetric allylic alkylation was reported. A series of sulfinamides were obtained with good outcomes (up to 99% yield, >19:1 dr, and 98:2 er). The synthetic utility of the reaction was demonstrated by scaled-up synthesis, product transformation, and application as a catalyst in asymmetric catalysis.
Collapse
Affiliation(s)
- Gaoliang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Qiu ZW, Li BQ, Liu HF, Zhu ZQ, Pan HP, Feng N, Ma AJ, Peng JB, Zhang XZ. Formal (3 + 4)-Annulation of Propargylic p-Quinone Methides with 2-Indolylmethanols: Synthesis of Polysubstituted Indole-Fused Oxepines. J Org Chem 2021; 86:7490-7499. [PMID: 34004118 DOI: 10.1021/acs.joc.1c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel Brønsted acid catalyzed 1,8-addition mediated (3 + 4)-annulation of in situ generated propargylic p-quinone methides with 2-indolylmethanols is described. This method provides a convenient and mild approach to structurally interesting and synthetically important polysubstituted indole-fused oxepines in high yields. Moreover, 2-indolylmethanols as four-atom synthons in the (3 + 4)-annulations under Brønsted acid conditions have been explored for the first time.
Collapse
Affiliation(s)
- Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P.R. China
| |
Collapse
|
32
|
Qiu ZW, Xu XT, Pan HP, Jia ZS, Ma AJ, Peng JB, Du JY, Feng N, Li BQ, Zhang XZ. Brønsted Acid-Catalyzed Formal (3+3)-Annulation of Propargylic (Aza)- para-Quinone Methides with 4-Hydroxycoumarins and 1,3-Dicarbonyl Compounds. J Org Chem 2021; 86:6075-6089. [PMID: 33820419 DOI: 10.1021/acs.joc.0c02844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we describe a highly effective 1,8-conjugate-addition-mediated formal (3+3)-annulation of (aza)-para-quinone methides in situ generated from propargylic alcohols with 4-hydroxycoumarins and 1,3-dicarbonyl compounds under the catalysis of a Brønsted acid. This methodology affords efficient and practical access to synthetically important and highly functionalized pyranocoumarins and pyrans in excellent yields under mild conditions. Importantly, these products exhibit impressive inhibitory activity toward α-glucosidase.
Collapse
Affiliation(s)
- Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Zhen-Sheng Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
33
|
Guo X, Chen X, Cheng Y, Chang X, Li X, Li P. Organocatalytic enantioselective [2 + 4]-annulation of γ-substituted allenoates with N-acyldiazenes for the synthesis of optically active 1,3,4-oxadiazines. Org Biomol Chem 2021; 19:1727-1731. [PMID: 33538742 DOI: 10.1039/d0ob02508a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective [2 + 4]-annulation of γ-substituted allenoates with N-acyldiazenes has been developed for the first time. In the presence of an l-proline-derived DMAP analogue, the annulation proceeded smoothly to afford a broad range of 1,3,4-oxadiazine derivatives in good to excellent yields with high stereoselectivities.
Collapse
Affiliation(s)
- Xing Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China. and Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuyu Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaoyong Chang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
34
|
Li F, Liang S, Luan Y, Chen X, Zhao H, Huang A, Li P, Li W. Organocatalytic regio-, diastereo- and enantioselective γ-additions of isoxazol-5(4 H)-ones to β,γ-alkynyl-α-imino esters for the synthesis of axially chiral tetrasubstituted α-amino allenoates. Org Chem Front 2021. [DOI: 10.1039/d0qo01505a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chiral phosphoric acid catalyzed regio-, diastereo- and enantioselective reaction of isoxazol-5(4H)-ones with β,γ-alkynyl-α-imino esters has been developed.
Collapse
Affiliation(s)
- Fushuai Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Shuai Liang
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Yepeng Luan
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Hanhui Zhao
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Anqi Huang
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
- China
| | - Wenjun Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| |
Collapse
|
35
|
Zhao JQ, Zhou S, Wang ZH, You Y, Chen S, Liu XL, Zhou MQ, Yuan WC. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5 H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org Chem Front 2021. [DOI: 10.1039/d1qo01061a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones is developed for the construction of dihydrobenzofuran-bridged polycyclic skeletons with good results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
36
|
Zhang QY, Li SJ, Wang Y, Song J, Lan Y, Wei D. Insights into the chiral sulfide/selenide-catalyzed electrophilic carbothiolation of alkynes: mechanism and origin of axial chirality. Org Chem Front 2021. [DOI: 10.1039/d1qo00036e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The FMO overlap mode, ELF, and AIM analyses along the formation process of thiiranium ion intermediate have been performed for the first time to explore the nature of the electronic structural changes and origin of stereoselectivity.
Collapse
Affiliation(s)
- Qiao-Yu Zhang
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Shi-Jun Li
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P.R. China
| | - Jinshuai Song
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yu Lan
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Donghui Wei
- College of Chemistry
- and Institute of Green Catalysis
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
37
|
Wang Z, Lin X, Chen X, Li P, Li W. Organocatalytic stereoselective 1,6-addition of thiolacetic acids to alkynyl indole imine methides: access to axially chiral sulfur-containing tetrasubstituted allenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00394a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A chiral phosphoric acid-catalyzed enantioselective 1,6-conjugate addition of thiolacetic acid to alkynyl indole imine methide in situ formed from α-(3-indolyl) propargylic alcohol has been established.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Xiao Lin
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Wenjun Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| |
Collapse
|
38
|
Song Q, Zhang P, Liang S, Chen X, Li P, Li W. Organocatalytic Regio- and Enantioselective 1,8-Additions of Nitrogen and Sulfur Nucleophiles to 6-Methylene-6H-indoles. Org Lett 2020; 22:7859-7863. [DOI: 10.1021/acs.orglett.0c02769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qianqian Song
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Pei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, SUSTech, Shenzhen 518055, China
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| |
Collapse
|
39
|
Zhang XZ, Li BQ, Qiu ZW, Ma AJ, Peng JB, Du JY, Feng N, Xu XT, Pan HP. Synthesis of Naphthopyrans via Formal (3+3)-Annulation of Propargylic (Aza)-para-Quinone Methides with Naphthols. J Org Chem 2020; 85:13306-13316. [DOI: 10.1021/acs.joc.0c01791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, People’s Republic of China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| |
Collapse
|
40
|
Hu Y, Shi W, Zheng B, Liao J, Wang W, Wu Y, Guo H. Organocatalytic Asymmetric C(sp
2
)−H Allylic Alkylation: Enantioselective Synthesis of Tetrasubstituted Allenoates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yimin Hu
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Wangyu Shi
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Bing Zheng
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Jianning Liao
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hongchao Guo
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| |
Collapse
|
41
|
Hu Y, Shi W, Zheng B, Liao J, Wang W, Wu Y, Guo H. Organocatalytic Asymmetric C(sp
2
)−H Allylic Alkylation: Enantioselective Synthesis of Tetrasubstituted Allenoates. Angew Chem Int Ed Engl 2020; 59:19820-19824. [PMID: 32820579 DOI: 10.1002/anie.202009460] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yimin Hu
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Wangyu Shi
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Bing Zheng
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Jianning Liao
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hongchao Guo
- Department of Chemistry China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| |
Collapse
|
42
|
Wang Z, Huang A, Fang F, Li P, Liu G, Li W. Non-hydrogen bond catalyst-mediated diastereoselective conjugate additions of 5H-oxazol-4-ones to o-hydroxyphenyl-substituted p-quinone methides. Org Biomol Chem 2020; 18:6807-6811. [PMID: 32857073 DOI: 10.1039/d0ob01558j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient DBU-catalyzed conjugate addition of 5H-oxazol-4-ones to o-hydroxyphenyl-substituted p-quinone methides has been developed, affording the valuable diarylmethanes in high yields with excellent diastereoselectivity. This strategy demonstrates a robust access to a wide range of diarylmethane derivatives possessing biologically significant o-hydroxyphenol and p-hydroxyphenol moieties under mild reaction conditions.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | | | | | | | | | | |
Collapse
|
43
|
Li X, Sun J. Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8‐Addition of Indole Imine Methides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006137] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xingguang Li
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
44
|
Zhu WR, Su Q, Diao HJ, Wang EX, Wu F, Zhao YL, Weng J, Lu G. Enantioselective Dehydrative γ-Arylation of α-Indolyl Propargylic Alcohols with Phenols: Access to Chiral Tetrasubstituted Allenes and Naphthopyrans. Org Lett 2020; 22:6873-6878. [PMID: 32808789 DOI: 10.1021/acs.orglett.0c02386] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report an enantioselective dehydrative γ-arylation of α-indolyl propargylic alcohols with phenols via organocatalysis, which provides efficient access to chiral tetrasubstituted allenes and naphthopyrans in high yields with excellent regio- and enantioselectivities under mild conditions. This method features the use of cheaply available naphthols/phenols as the C-H aryl source and liberating water as the sole byproduct. Control experiments suggest that the excellent enantioselectivity and remote regioselectivity stem from dual hydrogen-bonding interaction with the chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hong-Juan Diao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Er-Xuan Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Feng Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yun-Long Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
45
|
Song YX, Du DM. Recent advances in the catalytic asymmetric reactions of thiazolone derivatives. Org Biomol Chem 2020; 18:6018-6041. [PMID: 32705096 DOI: 10.1039/d0ob01261k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thiazolones as a class of five-membered heterocyclic compounds containing both nitrogen and sulfur, have been proved to possess important biological activities. Because thiazolone molecules have many reaction sites, they can carry out a series of modification reactions, which makes them good reaction substrates for various molecular syntheses. In recent years, research on the use of asymmetric organocatalysis to construct thiazolone derivatives has attracted a lot of attention. Among these, some breakthrough results have been achieved in the asymmetric synthesis of thiazolone derivatives. This review highlights recent developments in thiazolone derivatives in asymmetric reactions, including Michael additions, Mannich reactions as well as various cascade reactions.
Collapse
Affiliation(s)
- Yong-Xing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | |
Collapse
|
46
|
Fortunato M, Gimbert Y, Rousset E, Lameiras P, Martinez A, Gatard S, Plantier-Royon R, Jaroschik F. Diastereoselective Synthesis of Axially Chiral Xylose-Derived 1,3-Disubstituted Alkoxyallenes: Scope, Structure, and Mechanism. J Org Chem 2020; 85:10681-10694. [DOI: 10.1021/acs.joc.0c01240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Moustapha Fortunato
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Yves Gimbert
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058 Grenoble, France
| | - Elodie Rousset
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Pedro Lameiras
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Agathe Martinez
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Sylvain Gatard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | | |
Collapse
|
47
|
Zhang XZ, Li BQ, Qiu ZW, Wen GH, Ma AJ, Bao PJ, Du JY, Xu XT, Feng N. Synthesis of Pyrrolo[1,2-a]indoles via (3+2)-Annulations of (Aza)-para-Quinone Methides with Indoles. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient and straightforward Brønsted acid mediated (3+2)-annulation of (aza)-para-quinone methides, generated in situ from propargylic alcohols and indoles, has been developed involving 1,8-conjugate addition/5-endo annulation cascade. This protocol affords a mild and effective method for the construction of synthetically important and structurally interesting functionalized pyrrolo[1,2-a]indoles.
Collapse
Affiliation(s)
- Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University
| | - Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University
| | - Gui-Hua Wen
- School of Biotechnology and Health Sciences, Wuyi University
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University
| | - Peng-Jin Bao
- School of Biotechnology and Health Sciences, Wuyi University
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University
| |
Collapse
|
48
|
Lin X, Fang F, Lin W, Liu Z, Chang X, Li P, Li W. Organocatalytic Enantioselective α‐Amination by Conjugate Addition of 5
H
‐Thiazol‐4‐ones to Arylazocarboxylates: Access to Chiral
N
,
S
‐acetals. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao Lin
- Department of Medicinal ChemistrySchool of PharmacyQingdao University Qingdao Shandong 266021 China
| | - Fang Fang
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Wei Lin
- Department of Medicinal ChemistrySchool of PharmacyQingdao University Qingdao Shandong 266021 China
| | - Zhantao Liu
- Department of Medicinal ChemistrySchool of PharmacyQingdao University Qingdao Shandong 266021 China
| | - Xiaoyong Chang
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Pengfei Li
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
- Guangdong Provincial Key Laboratory of CatalysisSouthern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Wenjun Li
- Department of Medicinal ChemistrySchool of PharmacyQingdao University Qingdao Shandong 266021 China
| |
Collapse
|
49
|
Li X, Sun J. Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8‐Addition of Indole Imine Methides. Angew Chem Int Ed Engl 2020; 59:17049-17054. [DOI: 10.1002/anie.202006137] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Xingguang Li
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Kowloon, Hong Kong SAR China
| |
Collapse
|
50
|
Li F, Zhang C, Cheng Y, Jia Q, Li W, Liu K, Li P. Enantioselective Construction of Vicinal Sulfur‐functionalized Quaternary and Tertiary Stereocenters via Organocatalytic Michael Addition of 5
H
‐Thiazol‐4‐ones to 1‐Azadienes. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fushuai Li
- Department of Medicinal ChemistrySchool of PharmacyQingdao University Qingdao Shandong 266021 China
| | - Chen Zhang
- Department of Medicinal ChemistrySchool of PharmacyQingdao University Qingdao Shandong 266021 China
| | - Yuyu Cheng
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Qianfa Jia
- Chongqing Key Laboratory of Inorganic Special Functional MaterialsCollege of Chemistry and Chemical EngineeringYangtze Normal University Fuling Chongqing 408100 China
| | - Wenjun Li
- Department of Medicinal ChemistrySchool of PharmacyQingdao University Qingdao Shandong 266021 China
| | - Kun Liu
- Department of Medicinal ChemistrySchool of PharmacyQingdao University Qingdao Shandong 266021 China
| | - Pengfei Li
- Department of ChemistryCollege of ScienceSouthern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics SUSTech
| |
Collapse
|