1
|
Guo Q, Xie C, Zi G, Hou G. Enantioselective Synthesis of Chiral 1,5-Benzodiazepin-2-ones by Pd-Catalyzed Asymmetric Hydrogenation and Reductive Amination. Org Lett 2024; 26:8702-8707. [PMID: 39360951 DOI: 10.1021/acs.orglett.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The enantioselective synthesis of chiral 4-substituted 4,5-dihydro-1H-[1,5]benzodiazepin-2(3H)-ones via asymmetric hydrogenation catalyzed by the Pd/f-spiroPhos complex in the presence of hydrochloric acid as an additive has been developed, achieving excellent enantioselectivities and high turnover numbers, up to 99% ee and TON = 4600. More significantly, the asymmetric reductive amination of β-keto esters with 1,2-phenylenediamine has also been successfully realized to afford chiral 4-substituted 4,5-dihydro-1H-[1,5]benzodiazepin-2(3H)-ones with comparable enantioselectivities of up to 99% ee.
Collapse
Affiliation(s)
- Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Zade VM, Gangnale LD, Athawale PR, Reddy DS. Direct Deoxygenation of α-Hydroxy and α,β-Dihydroxy Ketones Using a Silyl Lithium Reagent. J Org Chem 2023; 88:14227-14235. [PMID: 37728533 DOI: 10.1021/acs.joc.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A reliable method for the one-step direct deoxygenation of α-hydroxy ketones has been developed using a silyl lithium reagent and acetic anhydride. The method is metal-catalyst-free and does not require prefunctionalization of the hydroxy group prior to its removal. Deoxygenation of different primary, secondary, and tertiary alcohols was carried out with up to 98% isolated yield. Additionally, double deoxygenation was achieved when the present method was applied to α,β-dihydroxy ketones to access the corresponding enones in a single step.
Collapse
Affiliation(s)
- Vishal M Zade
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Laxmikant D Gangnale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500007, India
| | - Paresh R Athawale
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500007, India
| |
Collapse
|
4
|
Liang XX, Zhu C, Zhang W, Du YN, Xu L, Liu L, Zhang Y, Han MY. Nucleophilic Allylation of Acylsilanes in Water: An Effective Alternative to Functionalized Tertiary α-Silylalcohols. J Org Chem 2023; 88:12087-12099. [PMID: 37497648 DOI: 10.1021/acs.joc.3c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A nucleophilic allylation of acylsilanes in water was developed, generating versatile functionalized tertiary α-silyl alcohols in high yields. With the assistance of hydrogen bonding, a reaction model of less reactive acylsilane was achieved. Unlike the conventional strategy, transition metals and an additional Lewis acid catalyst were not required, and rate acceleration was observed in water.
Collapse
Affiliation(s)
- Xiu-Xia Liang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ya-Nan Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lihua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
5
|
Zhang WW, Li BJ. Enantioselective Hydrosilylation of β,β-Disubstituted Enamides to Construct α-Aminosilanes with Vicinal Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202214534. [PMID: 36344453 DOI: 10.1002/anie.202214534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Despite the advances in the area of catalytic alkene hydrosilylation, the enantioselective hydrosilylation of alkenes bearing a heteroatom substituent is scarce. Here we report a rhodium-catalyzed hydrosilylation of β,β-disubstituted enamides to directly afford valuable α-aminosilanes in a highly regio-, diastereo-, and enantioselective manner. Stereodivergent synthesis could be achieved by regulating substrate geometry and ligand configuration to generate all the possible stereoisomers in high enantio-purity.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.,Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Zhang Z. Catalytic Asymmetric Hydrosilylation of β, β-Disubstituted Enamides. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Vale J, Gomes RF, Afonso CAM, Candeias NR. Functionalized Cyclopentenes via the Formal [4+1] Cycloaddition of Photogenerated Siloxycarbenes from Acyl Silanes. J Org Chem 2022; 87:8910-8920. [PMID: 35736215 PMCID: PMC9776530 DOI: 10.1021/acs.joc.2c00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work describes the first formal cycloaddition reaction of photogenerated nucleophilic carbenes derived from acylsilanes with electrophilic dienes. The resulting transient donor-acceptor cyclopropane rearranges to its stable and highly functionalized cyclopentene isomer in an unprecedented metal-free process. The cyclopropanation-vinyl cyclopropane rearrangement sequence was corroborated by computational calculations. The cyclopropane formation corresponds to a higher energetic barrier, and the vinylcyclopropane-cyclopentene rearrangement proceeds through different mechanisms, although of comparable energies, depending on the stereochemistry of the cyclopropane.
Collapse
Affiliation(s)
- João
R. Vale
- iMed.ULisboa,
Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal,Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 8, Tampere 33101, Finland
| | - Rafael F. Gomes
- iMed.ULisboa,
Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| | - Carlos A. M. Afonso
- iMed.ULisboa,
Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal,
| | - Nuno R. Candeias
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 8, Tampere 33101, Finland,LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal,
| |
Collapse
|
8
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
9
|
Li M, Zhang J, Zou Y, Zhou F, Zhang Z, Zhang W. Asymmetric hydrogenation for the synthesis of 2-substituted chiral morpholines. Chem Sci 2021; 12:15061-15066. [PMID: 34909146 PMCID: PMC8612400 DOI: 10.1039/d1sc04288b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds. 2-Substituted chiral morpholines were synthesized via a newly developed asymmetric hydrogenation of dehydromorpholines catalyzed by a bisphosphine–rhodium complex bearing a large bite angle.![]()
Collapse
Affiliation(s)
- Mingxu Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fengfan Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China .,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
10
|
Zhang Y, Guo J, Han J, Zhou X, Cao W, Fu Z. Bifunctional squaramide catalyzed asymmetric synthesis of chiral α-mercaptosilanes. Org Biomol Chem 2021; 19:6412-6416. [PMID: 34235529 DOI: 10.1039/d1ob00981h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bifunctional squaramide-catalyzed nucleophilic addition of thiophenols to easily available β-silyl α,β-unsaturated carbonyl compounds has been successfully developed. A structurally diverse set of chiral α-mercaptosilanes was efficiently prepared in good to excellent yields with acceptable enantioselectivities. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinna Han
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
11
|
Zhang X, Geng P, Liu G, Huang Z. Ru-Catalyzed Site-Selective Aliphatic C–H Bond Silylation of Amides and Carbamides. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Zhang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peiyu Geng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
12
|
Li B, Liu D, Hu Y, Chen J, Zhang Z, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of Hydrazones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Dan Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 R. China
- College of Chemistry Zhengzhou University 75 Daxue Road Zhengzhou 450052 P. R. China
| |
Collapse
|
13
|
Liu G, Tian K, Li C, You C, Tan X, Zhang H, Zhang X, Dong XQ. Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Alkenyl Sulfones, Benzo[ b]thiophene 1,1-Dioxides, with Mechanistic Studies. Org Lett 2021; 23:668-675. [PMID: 33471538 DOI: 10.1021/acs.orglett.0c03723] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A highly efficient catalytic system based on the cheap transition metal nickel for the asymmetric hydrogenation of challenging cyclic alkenyl sulfones, 3-substituted benzo[b]thiophene 1,1-dioxides, was first successfully developed. A series of hydrogenation products, chiral 2,3-dihydrobenzo[b]thiophene 1,1-dioxides, were obtained in high yields (95-99%) with excellent enantioselectivities (90-99% ee). According to the results of nonlinear effect studies, deuterium-labeling experiments, and DFT calculation investigations, a reasonable catalytic mechanism for this nickel-catalyzed asymmetric hydrogenation was provided, which displayed that the two added hydrogen atoms of the hydrogenation products could be from H2 through the insertion of Ni-H and subsequent hydrogenolysis.
Collapse
Affiliation(s)
- Gongyi Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Kui Tian
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chenzong Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, Hubei 430205, China
| | - Cai You
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuefeng Tan
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Heng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xumu Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
14
|
Wang F, Yang T, Wu T, Zheng LS, Yin C, Shi Y, Ye XY, Chen GQ, Zhang X. Asymmetric Transfer Hydrogenation of α-Substituted-β-Keto Carbonitriles via Dynamic Kinetic Resolution. J Am Chem Soc 2021; 143:2477-2483. [PMID: 33529522 DOI: 10.1021/jacs.0c13273] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A catalytic protocol for the enantio- and diastereoselective reduction of α-substituted-β-keto carbonitriles is described. The reaction involves a DKR-ATH process with the simultaneous construction of β-hydroxy carbonitrile scaffolds with two contiguous stereogenic centers. A wide range of α-substituted-β-keto carbonitriles were obtained in high yields (94%-98%) and excellent enantio- and diastereoselectivities (up to >99% ee, up to >99:1 dr). The origin of the diastereoselectivity was also rationalized by DFT calculations. Furthermore, this methodology offers rapid access to the pharmaceutical intermediates of Ipenoxazone and Tapentadol.
Collapse
Affiliation(s)
- Fangyuan Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Tilong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Ting Wu
- College of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Long-Sheng Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Congcong Yin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yongjie Shi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Xiang-Yu Ye
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | | | | |
Collapse
|
15
|
|
16
|
Abdine RAA, Hedouin G, Colobert F, Wencel-Delord J. Metal-Catalyzed Asymmetric Hydrogenation of C═N Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Racha Abed Ali Abdine
- Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Gaspard Hedouin
- Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Françoise Colobert
- Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
17
|
Fan D, Zhang J, Hu Y, Zhang Z, Gridnev ID, Zhang W. Asymmetric Hydrogenation of α-Boryl Enamides Enabled by Nonbonding Interactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04543] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongyang Fan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yanhua Hu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ilya D. Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6, Aoba-ku, Sendai 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
18
|
Wang C, Yue CD, Yuan J, Zheng JL, Zhang Y, Yu H, Chen J, Meng S, Yu Y, Yu GA, Che CM. Synthesis of P-chiral phosphine compounds by palladium-catalyzed C–P coupling reactions. Chem Commun (Camb) 2020; 56:11775-11778. [DOI: 10.1039/d0cc05340f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient C–P coupling reactions of enantiopure tert-butylmethylphosphine-boranes with aryl and heteroaryl halides is developed by using Pd(OAc)2/dppf as a catalyst, affording a series of P-chiral phosphines (up to 99% ee).
Collapse
Affiliation(s)
- Cuiying Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Chang-Duo Yue
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Jia Yuan
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Jia-Lian Zheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Ying Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Hong Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Jian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Sixuan Meng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Yang Yu
- Department of Chemistry, Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Guang-Ao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University
- Wuhan 430079
- China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong
- Hong Kong
- China
| |
Collapse
|
19
|
Ni C, Gao J, Fang X. Cu(i)-Catalyzed asymmetric intramolecular addition of aryl pinacolboronic esters to unactivated ketones: enantioselective synthesis of 2,3-dihydrobenzofuran-3-ol derivatives. Chem Commun (Camb) 2020; 56:2654-2657. [DOI: 10.1039/c9cc09653a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An (S,S)-QuinoxP*-supported Cu(i) catalyst has been disclosed for highly enantioselective intramolecular addition of aryl pinacolboronic esters to unactivated ketones under mild reaction conditions.
Collapse
Affiliation(s)
- Chunjie Ni
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jihui Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
20
|
Chen J, Li F, Wang F, Hu Y, Zhang Z, Zhao M, Zhang W. Pd(OAc)2-Catalyzed Asymmetric Hydrogenation of α-Iminoesters. Org Lett 2019; 21:9060-9065. [DOI: 10.1021/acs.orglett.9b03452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Feilong Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Fang Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | | | | | - Min Zhao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | | |
Collapse
|
21
|
Hu Y, Zhang Z, Zhang J, Liu Y, Gridnev ID, Zhang W. Cobalt‐Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909928] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jian Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of Chemistry Graduate School of Science Tohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
22
|
Hu Y, Zhang Z, Zhang J, Liu Y, Gridnev ID, Zhang W. Cobalt-Catalyzed Asymmetric Hydrogenation of C=N Bonds Enabled by Assisted Coordination and Nonbonding Interactions. Angew Chem Int Ed Engl 2019; 58:15767-15771. [PMID: 31464078 DOI: 10.1002/anie.201909928] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 12/29/2022]
Abstract
An efficient cobalt-catalyzed asymmetric hydrogenation of C=N bonds has been realized. Chiral hydrazines were obtained in high yields and with excellent enantioselectivities (95-98 % ee). The hydrogenation went smoothly at up to 2000 substrate/catalyst and on a gram scale. The success of this reaction relies on the presence of an NHBz group in the substrates, with the reactivity and enantioselectivity improved by an assisted coordination to the cobalt atom and a nonbonding interaction with the ligand. Furthermore, this reaction has practical applications for the synthesis of several useful chiral nitrogen-containing compounds.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ilya D Gridnev
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki 3-6, Aoba-ku, Sendai, 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
23
|
Zhang J, Jia J, Zeng X, Wang Y, Zhang Z, Gridnev ID, Zhang W. Chemo‐ and Enantioselective Hydrogenation of α‐Formyl Enamides: An Efficient Access to Chiral α‐Amido Aldehydes. Angew Chem Int Ed Engl 2019; 58:11505-11512. [DOI: 10.1002/anie.201905263] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jia Jia
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xincheng Zeng
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuanhao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
24
|
|
25
|
Zhang J, Jia J, Zeng X, Wang Y, Zhang Z, Gridnev ID, Zhang W. Chemo‐ and Enantioselective Hydrogenation of α‐Formyl Enamides: An Efficient Access to Chiral α‐Amido Aldehydes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jia Jia
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xincheng Zeng
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yuanhao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of ChemistryGraduate School of ScienceTohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|