1
|
Alonso D, Maciá B, Pastor IM, Baeza A. Recent Advances on the Catalytic Asymmetric Allylic α-Alkylation of Carbonyl Derivatives Using Free Allylic Alcohols. ACS ORGANIC & INORGANIC AU 2024; 4:269-286. [PMID: 38855332 PMCID: PMC11157516 DOI: 10.1021/acsorginorgau.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 06/11/2024]
Abstract
During the last years, the development of more sustainable and straightforward methodologies to minimize the generation of waste organic substances has acquired high importance within synthetic organic chemistry. Therefore, it is not surprising that many efforts are devoted to ameliorating already well-known successful methodologies, that is, the case of the asymmetric allylic allylation reaction of carbonyl compounds. The use of free alcohols as alkylating agents in this transformation represents a step forward in this sense since it minimizes waste production and the substrate manipulation. In this review, we aim to gather the most recent methodologies describing this strategy by paying special attention to the reaction mechanisms, as well as their synthetic applications.
Collapse
Affiliation(s)
- Diego
A. Alonso
- Instituto
de Síntesis Orgánica, and Dpto. de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Beatriz Maciá
- Department
of Natural Sciences, Manchester Metropolitan
University, Oxford Road, Manchester M1 5GD, United Kingdom
| | - Isidro M. Pastor
- Instituto
de Síntesis Orgánica, and Dpto. de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Alejandro Baeza
- Instituto
de Síntesis Orgánica, and Dpto. de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
2
|
Lin Z, Liu B, Wang Y, Li S, Zhu S. Synthesis of vinyl-substituted alcohols using acetylene as a C2 building block. Chem Sci 2023; 14:1912-1918. [PMID: 36819868 PMCID: PMC9930919 DOI: 10.1039/d2sc06400f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Vinyl-substituted alcohols represent a highly useful class of molecular skeletons. The current method typically requires either stoichiometric metallic reagents or preformed precursors. Herein, we report a nickel catalysis-enabled synthesis of vinyl-substituted alcohols via a 5-membered oxa-metallacycle. In this protocol, acetylene, the simplest alkyne and abundant feedstock, is employed as an ideal C2 synthon. The reaction features mild conditions, good functional group tolerance and broad substrate scope. Mechanistic exploration implies that the oxa-metallacycle originated from the cyclometallation of aldehyde and acetylene is the key intermediate for this transformation, which is then terminated by a silane-mediated σ-bond metathesis and subsequent reductive elimination.
Collapse
Affiliation(s)
- Zhicong Lin
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Boxiang Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Yu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Siju Li
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
3
|
Lu S, Chen X, Chang X, Zhang S, Zhang D, Zhao Y, Yang L, Ma Y, Sun P. Boron-catalysed transition-metal-free arylation and alkenylation of allylic alcohols with boronic acids. RSC Adv 2023; 13:3329-3332. [PMID: 36756407 PMCID: PMC9869934 DOI: 10.1039/d2ra07919d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
The development of efficient catalytic reactions with excellent atom and step economy employing sustainable catalysts is highly sought-after in chemical synthesis to reduce the negative effects on the environment. The most commonly-used strategy to construct allylic compounds relies on the transition-metal-catalysed nucleophilic substitution reaction of allylic alcohol derivatives. These syntheses exhibit good yield and selectivity, albeit at the expense of toxic and expensive catalysts and extra steps. In this paper, we report a transition-metal-free arylation and alkenylation reaction between unprotected allylic alcohols and boronic acids. The reactions were performed with B(C6F5)3 as the catalyst in toluene, and corresponding products were obtained in 23-92% yields. The reaction has mild conditions, scalability, excellent atom and step economy.
Collapse
Affiliation(s)
- Sixian Lu
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Xingyu Chen
- School of Pharmacy, Chengdu UniversityChengduSichuan610106China
| | - Xiaoqiang Chang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Shuaichen Zhang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Dong Zhang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yifan Zhao
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Lan Yang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yue Ma
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Peng Sun
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
4
|
Moghadam FA, Hicks EF, Sercel ZP, Cusumano AQ, Bartberger MD, Stoltz BM. Ir-Catalyzed Asymmetric Allylic Alkylation of Dialkyl Malonates Enabling the Construction of Enantioenriched All-Carbon Quaternary Centers. J Am Chem Soc 2022; 144:7983-7987. [PMID: 35476460 PMCID: PMC10038141 DOI: 10.1021/jacs.2c02960] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An enantioselective iridium-catalyzed allylic alkylation of malonates with trisubstituted allylic electrophiles to form all-carbon quaternary stereocenters is reported. This reaction proceeds at ambient temperature and enables the preparation of a wide range of enantioenriched products in up to 93% yield and 97% ee. The quaternary products can be readily converted to several valuable building blocks such as vicinal quaternary products and β-quaternary acids.
Collapse
Affiliation(s)
- Farbod A. Moghadam
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena CA 91125, USA
| | - Elliot F. Hicks
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena CA 91125, USA
| | - Zachary P. Sercel
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena CA 91125, USA
| | - Alexander Q. Cusumano
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena CA 91125, USA
| | | | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, MC 101-20, Pasadena CA 91125, USA
- Corresponding Author:
| |
Collapse
|
5
|
Mhasni O, Elleuch H, Rezgui F. Direct nucleophilic substitutions of allylic alcohols with 1,3-dicarbonyl compounds: Synthetic design, mechanistic aspects and applications. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Sawano T, Takeuchi R. Recent advances in iridium-catalyzed enantioselective allylic substitution using phosphoramidite-alkene ligands. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00316c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This minireview describes the recent progress of iridium-catalyzed enantioselective allylic substitution using phosphoramidite-alkene ligands realizing highly enantioselective carbon–carbon and carbon–heteroatom bond formation.
Collapse
Affiliation(s)
- Takahiro Sawano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
7
|
Zhang TY, Deng Y, Wei K, Yang YR. Enantioselective Iridium-Catalyzed Allylic Alkylation of Racemic Branched Alkyl-Substituted Allylic Acetates with Malonates. Org Lett 2021; 23:1086-1089. [PMID: 33480703 DOI: 10.1021/acs.orglett.0c04309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The regio- and enantioselective allylic substitution of branched alkyl-substituted allylic acetates employing malonates has been achieved through a process that calls for Krische's π-allyliridium C,O-benzoate catalyst. The protocol reported herein can be applied to a diverse set of branched alkyl substrates that are generally not well tolerated in the other two types of Ir-catalyzed allylation.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
8
|
Cui B, Gao J, Fan L, Jiao Y, Lu T, Feng J. Dehydroxylated C-3 Alkylation of Indole Accompanied by 1,2-Sulfur Migration. J Org Chem 2020; 85:6206-6215. [DOI: 10.1021/acs.joc.0c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- BingBing Cui
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Jian Gao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Lu Fan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Yu Jiao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| | - Jie Feng
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing 210009, P.R. China
| |
Collapse
|
9
|
Liu X, Jin S, Zhang W, Liu Q, Zheng C, You S. Sequence‐Dependent Stereodivergent Allylic Alkylation/Fluorination of Acyclic Ketones. Angew Chem Int Ed Engl 2020; 59:2039-2043. [DOI: 10.1002/anie.201912882] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Xi‐Jia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shicheng Jin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Yun Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiang‐Qiang Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
10
|
Liu X, Jin S, Zhang W, Liu Q, Zheng C, You S. Sequence‐Dependent Stereodivergent Allylic Alkylation/Fluorination of Acyclic Ketones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xi‐Jia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shicheng Jin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Yun Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiang‐Qiang Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
11
|
Liu C, Deng C, Yang H, Qian X, Tang S, Poznik M, Chruma JJ. Nickel-Catalyzed Decarboxylative Generation and Asymmetric Allylation of 2-Azaallyl Anions. J Org Chem 2019; 84:10102-10110. [PMID: 31328915 DOI: 10.1021/acs.joc.9b01293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first nickel-catalyzed asymmetric decarboxylative allylation (DcA) of allyl 2,2-diarylglycinate imines is reported. This transformation utilizes a chiral ferrocenyl bidentate ligand and a Ni(0) precatalyst to mediate the decarboxylative generation and asymmetric allylation of 2-azaallyl anions, affording α-aryl homoallylic imines in modest-to-high yields and moderate-to-high enantiomeric ratios. The resulting Ni-catalyzed transformation proved to be less general in comparison to our previously reported analogous Pd-mediated protocol, but it still exhibited certain advantages in regard to the regio- and enantioselectivity of the C-C bond formation.
Collapse
Affiliation(s)
- Chenlu Liu
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry and Sino-British Materials Research Institute, College of Physical Science & Technology , Sichuan University , No. 29, Wangjiang Road , Chengdu 610064 , China
| | - Changfeng Deng
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry and Sino-British Materials Research Institute, College of Physical Science & Technology , Sichuan University , No. 29, Wangjiang Road , Chengdu 610064 , China
| | - Han Yang
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry and Sino-British Materials Research Institute, College of Physical Science & Technology , Sichuan University , No. 29, Wangjiang Road , Chengdu 610064 , China
| | - Xiaoyan Qian
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry and Sino-British Materials Research Institute, College of Physical Science & Technology , Sichuan University , No. 29, Wangjiang Road , Chengdu 610064 , China
| | - Shaojian Tang
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry and Sino-British Materials Research Institute, College of Physical Science & Technology , Sichuan University , No. 29, Wangjiang Road , Chengdu 610064 , China
| | - Michal Poznik
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry and Sino-British Materials Research Institute, College of Physical Science & Technology , Sichuan University , No. 29, Wangjiang Road , Chengdu 610064 , China
| | - Jason J Chruma
- Key Laboratory of Green Chemistry & Technology (MOE), College of Chemistry and Sino-British Materials Research Institute, College of Physical Science & Technology , Sichuan University , No. 29, Wangjiang Road , Chengdu 610064 , China
| |
Collapse
|
12
|
Liu X, Zheng C, Yang Y, Jin S, You S. Iridium‐Catalyzed Asymmetric Allylic Aromatization Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xi‐Jia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yi‐Han Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shicheng Jin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
13
|
Liu X, Zheng C, Yang Y, Jin S, You S. Iridium‐Catalyzed Asymmetric Allylic Aromatization Reaction. Angew Chem Int Ed Engl 2019; 58:10493-10499. [DOI: 10.1002/anie.201904156] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Xi‐Jia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yi‐Han Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shicheng Jin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|