1
|
Faialaga NH, Gephart DP, Silva BD, Liu RY. Synthesis of Arenesulfenyl Fluorides and Fluorosulfenylation of Alkenes, Alkynes, and α-Diazocarbonyl Compounds. Angew Chem Int Ed Engl 2024:e202422120. [PMID: 39671513 DOI: 10.1002/anie.202422120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Sulfenyl fluorides are organic compounds of sulfur in formal oxidation state +2 with the formula R-S-F. Although the chloride, bromide, and iodide analogues have been extensively described in the literature, arenesulfenyl fluorides remain essentially unstudied. These structures have been implicated as putative intermediates in established processes to access polyfluorinated sulfur species; however, definitive and direct evidence of their existence has not been obtained, nor has a systematic understanding of their reactivity. Here, we report the synthesis, isolation, and spectroscopic characterization of several arenesulfenyl fluorides, including structural analysis of 2,4-dinitrobenzenesulfenyl fluoride and 4-cyano-2-nitrobenzenesulfenyl fluoride by single-crystal X-ray diffraction. The functional group undergoes direct, efficient, and highly regioselective anti-addition to alkenes and alkynes, as well as insertion by carbenes. The resulting α- or β-fluoro thioether adducts can be readily transformed into useful fluorinated motifs, for example by modification of the sulfur groups (to sulfonamides or sulfonyl fluorides), by sulfur elimination (to generate formal C-H fluorination products), or by Julia-Kocienski olefination (to form vinyl fluorides). Thus, we establish that sulfenyl fluorides are unexpectedly accessible and stable compounds, which serve as versatile reagents for the production of fluorinated organic compounds.
Collapse
Affiliation(s)
- Nathan H Faialaga
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, Massachusetts, 02138, United States
| | - Dana P Gephart
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, Massachusetts, 02138, United States
| | - Breno D Silva
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, Massachusetts, 02138, United States
| | - Richard Y Liu
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
2
|
Li S, Ling J, Zhou L. Visible-Light-Promoted Radical gem-Selenosulfonylation or -Iodosulfonylation of 2,2,2-Trifluorodiazoethane under Photosensitizer-Free Conditions. Org Lett 2024; 26:5220-5225. [PMID: 38856637 DOI: 10.1021/acs.orglett.4c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A visible-light-promoted radical gem-difunctionalization of trifluorodiazoethane with RSO2X (X = SeR', I) for the synthesis of α-seleno or α-iodo trifluoroethyl sulfones is described. This atom-economical reaction is external-photocatalyst- and additive-free and uses nontoxic ethyl acetate as the solvent. The resultant products, which incorporate sulfonyl, trifluoromethyl, and iodo or selenyl functional groups onto one carbon atom, can serve as versatile building blocks. A major synthetic application was demonstrated by ATRA reactions with various terminal alkynes.
Collapse
Affiliation(s)
- Sen Li
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiahao Ling
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Le TV, Ramachandru GG, Daugulis O. Trifluoroethylation and Pentafluoropropylation of C(sp 3)-H Bonds. Chemistry 2024; 30:e202303190. [PMID: 38011542 DOI: 10.1002/chem.202303190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Polyfluorinated substituents often enhance effectiveness, improve the stability within metabolic processes, and boost the lipophilicity of biologically active compounds. However, methods for their introduction into aliphatic carbon chains remain very limited. A potentially general route to integrate the fluorinated scaffolds into organic molecules involves insertion of fluorine-containing carbenes into C(sp3)-H bonds. The electron-withdrawing characteristics of perfluoroalkyl groups enhances the reactivity of these carbenes which should enable the functionalization of unactivated C(sp3)-H bonds. Curiously, it appears that use of perfluoroalkyl-containing carbenes in alkane C-H functionalization is exceedingly rare. This concept describes photolysis, enzymatic catalysis, and transition metal catalysis as three primary approaches to C(sp3)-H functionalization by trifluoromethylcarbene and its homologues.
Collapse
Affiliation(s)
- Thanh V Le
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| | - Girish G Ramachandru
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| |
Collapse
|
4
|
Zhao P, Liu Y, Zhang Y, Wang L, Ma Y. Photodriven Radical-Polar Crossover Cyclization Strategy: Synthesis of Pyrazolo[1,5- a]pyridines from Diazo Compounds. Org Lett 2024. [PMID: 38506402 DOI: 10.1021/acs.orglett.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
This work demonstrates the synthesis of a variety of perfluoroalkyl heterocycles via a visible-light-driven radical-polar crossover cyclization strategy. In this process, single-electron reduction/SNV-type/cyclization sequences follow the radical addition reaction of a diazoester, which differs from the current role of diazoesters as radical precursors/acceptors. This transformation demonstrates excellent functional group compatibility and allows for the modification of many bioactive molecules with diazoesters. Such a reaction could represent a novel approach to the photochemical transformation of diazo compounds.
Collapse
Affiliation(s)
- Peng Zhao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yanbo Liu
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Yuting Zhang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, China
| |
Collapse
|
5
|
Le TV, Romero I, Daugulis O. "Sandwich" Diimine-Copper Catalyzed Trifluoroethylation and Pentafluoropropylation of Unactivated C(sp 3 )-H Bonds by Carbene Insertion. Chemistry 2023; 29:e202301672. [PMID: 37267071 PMCID: PMC10642771 DOI: 10.1002/chem.202301672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
We report here "sandwich"-diimine copper complex-catalyzed trifluoroethylation and pentafluoropropylation of unactivated C(sp3 )-H bonds in alkyl esters, halides, and protected amines by employing CF3 CHN2 and CF3 CF2 CHN2 reagents. Reactions proceed in dichloromethane solvent at room temperature. Identical C-H functionalization conditions and stoichiometries are employed for generality and convenience. Selectivities for C-H insertions are higher for compounds possessing stronger electron-withdrawing substituents. Preliminary mechanistic studies point to a mechanism involving a pre-equilibrium forming a "sandwich"-diimine copper-CF3 CHN2 complex followed by rate-determining loss of nitrogen affording the reactive copper carbene. It reacts with trifluoromethyldiazomethane about 6.5 times faster than with 1-fluoroadamantane explaining the need for slow addition of the diazo compound.
Collapse
Affiliation(s)
| | | | - Olafs Daugulis
- Department of Chemistry, University of Houston 3585 Cullen Blvd
| |
Collapse
|
6
|
Liu Y, Pang T, Yao W, Zhong F, Wu G. Visible-Light-Induced Radical gem-Iodoallylation of 2,2,2-Trifluorodiazoethane. Org Lett 2023; 25:1958-1962. [PMID: 36912766 DOI: 10.1021/acs.orglett.3c00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A visible-light-induced radical gem-iodoallylation of CF3CHN2 was developed under mild conditions, delivering a variety of α-CF3-substituted homoallylic iodide compounds in moderate to excellent yields. The transformation features broad substrate scope, good functional group compatibility, and operational simplicity. The described protocol provides a convenient and attractive tool to apply CF3CHN2 as CF3-introduction reagent in radical synthetic chemistry.
Collapse
Affiliation(s)
- Yu Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Tengfei Pang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Guojiao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
7
|
Jiang YQ, Wang YH, Zhou CF, Zhang YQ, Ling Y, Zhao Y, Liu GQ. N-Fluorobenzenesulfonimide-Mediated Intermolecular Carboselenenylation of Olefins with Aromatics and Diselenides. J Org Chem 2022; 87:14609-14622. [DOI: 10.1021/acs.joc.2c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- You-Qin Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yong-Hao Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Chen-Fan Zhou
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yun-Qian Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yu Zhao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Gong-Qing Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| |
Collapse
|
8
|
Liu X, Wang Z, Wang Q, Wang Y. Rhodium(II)‐Catalyzed C(sp
3
)−H Diamination of Arylcyclobutanes. Angew Chem Int Ed Engl 2022; 61:e202205493. [DOI: 10.1002/anie.202205493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xinyu Liu
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifan Wang
- College of Chemistry Sichuan University Chengdu 610041 China
| | - Qiwei Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- Department of Chemistry Xihua University Chengdu 610039 China
| | - Yuanhua Wang
- College of Chemistry Sichuan University Chengdu 610041 China
| |
Collapse
|
9
|
Ma Z, Deng Y, He J, Cao S. Solvent-controlled base-free synthesis of bis(trifluoromethyl)-cyclopropanes and -pyrazolines via cycloaddition of 2-trifluoromethyl-1,3-enynes with 2,2,2-trifluorodiazoethane. Org Biomol Chem 2022; 20:5071-5075. [PMID: 35704947 DOI: 10.1039/d2ob00894g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient solvent-controlled synthesis of bis(trifluoromethyl)cyclopropanes and bis(trifluoromethyl)pyrazolines via a [2 + 1] or [3 + 2] cycloaddition reaction of 2-trifluoromethyl-1,3-conjugated enynes with CF3CHN2 was developed. The reactions of 2-trifluoromethyl-1,3-conjugated enynes with CF3CHN2 proceeded smoothly under transition-metal and base-free conditions, affording the expected cycloaddition products in good to excellent yields. When DMAc (N,N-dimethylacetamide) was used as the solvent, bis(trifluoromethyl)pyrazolines were obtained; however, in contrast, bis(trifluoromethyl)cyclopropanes were formed by changing the solvent from DMAc to DCE (1,2-dichloroethane).
Collapse
Affiliation(s)
- Zhihong Ma
- Biotalk Company Limited, Shanghai, 200090, China
| | - Yupian Deng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
10
|
Liu X, Wang Z, Wang Q, Wang Y. Rhodium(II)‐Catalyzed C(sp
3
)−H Diamination of Arylcyclobutanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xinyu Liu
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifan Wang
- College of Chemistry Sichuan University Chengdu 610041 China
| | - Qiwei Wang
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- Department of Chemistry Xihua University Chengdu 610039 China
| | - Yuanhua Wang
- College of Chemistry Sichuan University Chengdu 610041 China
| |
Collapse
|
11
|
Wang Q, Liu J, Wang N, Pajkert R, Mei H, Röschenthaler G, Han J. One‐Pot Reaction of (β‐Amino‐α,α‐difluoroethyl)phosphonates with Trifluoromethylated Ketones via Aza‐Wittig Reagents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Nana Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
12
|
Liu J, Pajkert R, Wang L, Mei H, Röschenthaler GV, Han J. Facile synthesis of (β-chlorodifluoroethyl)phosphonates via chlorination reaction of difluoroalkyl diazo derivatives with HCl. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Haider V, Zebrowski P, Michalke J, Monkowius U, Waser M. Enantioselective organocatalytic syntheses of α-selenated α- and β-amino acid derivatives. Org Biomol Chem 2022; 20:824-830. [PMID: 35015015 PMCID: PMC8790592 DOI: 10.1039/d1ob02235k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Selenium-containing amino acids are valuable targets but methods for the stereoselective α-selenation of simple amino acid precursors are rare. We herein report the enantioselective electrophilic α-selenation of azlactones (masked α-amino acid derivatives) and isoxazolidin-5-ones (masked β-amino acids) using Cinchona alkaloids as easily accessible organocatalysts. A variety of differently substituted derivatives was accessed with reasonable levels of enantioselectivities and further studies concerning the stability and suitability of these compounds for further manipulations have been carried out as well.
Collapse
Affiliation(s)
- Victoria Haider
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria.
| | - Paul Zebrowski
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria.
| | - Jessica Michalke
- Institute of Catalysis, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Uwe Monkowius
- School of Education, Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria.
| |
Collapse
|
14
|
Song M, Hu Q, Li ZY, Sun X, Yang K. NFSI-catalyzed S‒S bond exchange reaction for the synthesis of unsymmetrical disulfides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Wang Q, Wang L, Pajkert R, Hajdin I, Mei H, Röschenthaler GV, Han J. [3+2] Cycloaddition reactions of β-diazo-α,α-difluoromethylphosphonates with α,β-unsaturated esters. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Li J, Xing D, Hu W. gem-Difunctionalization of α-diazoarylketones with diaryldiselenides and N-halosuccinimides: facile synthesis of α-halo-α-arylseleno ketones. Mol Divers 2021; 25:2459-2466. [PMID: 32410115 DOI: 10.1007/s11030-020-10100-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
An efficient synthesis of α-halo-α-arylseleno ketones has been developed via gem-difunctionalization of α-diazoarylketones with diaryldiselenides and N-halosuccinimides. With this multicomponent approach, a series of α-halo-α-arylseleno ketones were accessed in excellent yields and chemoselectivities under mild conditions. This transformation is proposed to proceed via the key intermediate arylselenenyl halide that generated from diaryldiselenides/N-halosuccinimides, followed by addition with α-diazoarylketones to give the desired gem-difunctionalization products.
Collapse
Affiliation(s)
- Jiuling Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Wenhao Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Zheng K, Zhou E, Zhang L, Zhang L, Yu W, Xu H, Shen C. Catalyst controlled remote C H activation of 8-aminoquinolines with NFSI for C N versus C F coupling. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
18
|
Li J, Li B, Chen J, Jia X, Wang M, Hao C, Zheng X, Dai H, Hu W. Catalyst-free gem-chlorosulfurization of difluoromethyl-substituted diazo compounds with disulfide and PhICl 2. Org Biomol Chem 2021; 19:8030-8034. [PMID: 34486639 DOI: 10.1039/d1ob01422f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of gem-chlorosulfurization products bearing difluoromethyl substituents were synthesized in high to excellent yields directly from p-toluenesulfonyl difluorodiazoethane (TsCF2CHN2), disulfides and PhICl2 without any catalysts or additives. The mild reaction conditions and high functional group compatibility indicated the utility and sustainability of the method. In addition, the gem-chlorosulfurization products could be efficiently converted to sulfur-containing and aryl substituted difluoromethyl derivatives by a feasible multi-component operation.
Collapse
Affiliation(s)
- Jiuling Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China. .,Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China.
| | - Bin Li
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China.
| | - Juan Chen
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China.
| | - Xinyu Jia
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China.
| | - Min Wang
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China.
| | - Chengjun Hao
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China.
| | - Xinhua Zheng
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China.
| | - Hongmei Dai
- Henan Engineering Research Center of Funiu Mountain's Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China.
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Ramirez NP, Pisella G, Waser J. Cu(I)-Catalyzed gem-Aminoalkynylation of Diazo Compounds: Synthesis of Fluorinated Propargylic Amines. J Org Chem 2021; 86:10928-10938. [PMID: 34260244 DOI: 10.1021/acs.joc.1c01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gem-aminoalkynylation of fluorinated diazo compounds catalyzed by a simple Cu(I) salt is described. This three-component reaction allows the synthesis of propargylic amines with broad functional group tolerance. Both electron-rich and electron-poor anilines can be used as nucleophiles and alkyl-, aryl-, and silyl-substituted EthynylBenziodoXoles (EBX) as electrophiles.
Collapse
Affiliation(s)
- Nieves P Ramirez
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Mei H, Wang L, Pajkert R, Wang Q, Xu J, Liu J, Röschenthaler GV, Han J. In Situ Generation of Unstable Difluoromethylphosphonate-Containing Diazoalkanes and Their Use in [3 + 2] Cycloaddition Reactions with Vinyl Sulfones. Org Lett 2021; 23:1130-1134. [PMID: 33480704 DOI: 10.1021/acs.orglett.1c00150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A [3 + 2] cycloaddition reaction of unstable difluoromethylphosphonate-containing diazoalkanes with vinyl sulfones under simple reaction conditions is developed, which provides an efficient route toward functionalized fluorinated pyrazolines derivatives in good chemical yields. The difluoro diazoalkanes are generated in situ using t-BuONO for the diazotization of (β-amino-α,α-difluoroethyl)phosphonates, and their stabilities and reactivities were carefully investigated.
Collapse
Affiliation(s)
- Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingcheng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gerd-Volker Röschenthaler
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Liu LQ, Li JL, Wang YC, Wang HS. N-fluorobenzenesulfonimide (NFSI)-mediated rapid regioselective oxyselenation of internal alkenes with diselenides. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Zhang Z, He Z, Xie Y, He T, Fu Y, Yu Y, Huang F. Brønsted acid-catalyzed homogeneous O–H and S–H insertion reactions under metal- and ligand-free conditions. Org Chem Front 2021. [DOI: 10.1039/d0qo01401j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The economical and accessible CF3SO3H successfully catalyzed homogeneous O–H and S–H bond insertion reactions between hydroxyl compounds, thiols and diazo compounds under metal- and ligand-free conditions.
Collapse
Affiliation(s)
- Zhipeng Zhang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Biology and Biological Engineering
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Tiantong He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yaofeng Fu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering
- Nanjing Normal University
- Nanjing 210023
- P. R. China
- School of Pharmaceutical Sciences
| |
Collapse
|
23
|
Hua J, Bian M, Ma T, Yang M, He W, Yang Z, Liu C, Fang Z, Guo K. The sunlight-promoted aerobic selective cyclization of olefinic amides and diselenides. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02273j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel sunlight-promoted approach for the selective synthesis of selenated iminoisobenzofurans or isoindolinones via the aerobic O-cyclization or N-cyclization of olefinic amides with diselenides has been developed.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
24
|
Li C, Zhang X, He J, Xu S, Cao S. Et
3
N‐Catalyzed
Cycloaddition Reactions of α‐(Trifluoromethyl)styrenes with 2,2,
2‐Trifluorodiazoethane
to Access Bis(trifluoromethyl)‐Substituted Pyrazolines. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chunmei Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Xuxue Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University Jinan Shandong 250200 China
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Sixue Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
25
|
Zhao Z, Zhang Y, Shao Y, Xiong W, Li R, Chen J. Synthesis of 3-Selenylindoles through Organoselenium-Promoted Selenocyclization of 2-Vinylaniline. J Org Chem 2020; 85:15015-15025. [PMID: 33152246 DOI: 10.1021/acs.joc.0c01918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel metal-free one-pot protocol for the synthesis of potential biologically active molecules 3-selenylindoles via intramolecular cyclization/selenylation with simple 2-vinylaniline has been developed with moderate to good yield, thus representing it as a facile route to diverse substitution patterns around the indole core. The reaction proceeded smoothly with a broad substrate scope and excellent functional group tolerance. Moreover, the present synthetic route could be readily scaled up to gram quantity without difficulty. Mechanistic studies have revealed that in situ formed selenium electrophile species may be the key intermediate for the selenocyclization process.
Collapse
Affiliation(s)
- Zhiwei Zhao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yetong Zhang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenzhang Xiong
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Renhao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
26
|
Silva MS, Alves D, Hartwig D, Jacob RG, Perin G, Lenardão EJ. Selenium‐NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Márcio S. Silva
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Diego Alves
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Daniela Hartwig
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Raquel G. Jacob
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Gelson Perin
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| |
Collapse
|
27
|
Affiliation(s)
- Pavel K. Mykhailiuk
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| |
Collapse
|
28
|
Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu C, He W, Zhu N, Yang Z, Guo K. Electrochemical Synthesis of Spiro[4.5]trienones through Radical-Initiated Dearomative Spirocyclization. CHEMSUSCHEM 2020; 13:2053-2059. [PMID: 32012457 DOI: 10.1002/cssc.202000098] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
A novel and green route has been developed for the electrochemical synthesis of spiro[4.5]trienones through radical-initiated dearomative spirocyclization of alkynes with diselenides. This metal-free and oxidant-free electrosynthesis reaction was performed in an undivided cell under mild conditions. A variety of selenation spiro[4.5]trienones products were prepared in moderate-to-good yields, showing a broad scope and functional group tolerance. Moreover, the developed continuous-flow system combined with electrosynthesis possesses the potential to achieve scaled-up reactions, overcoming the low efficiency of conventional electrochemical scaled-up reactions.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Jia Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, P.R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| |
Collapse
|
29
|
Jamali MF, Gupta E, Kumar A, Kant R, Mohanan K. Ag-Catalyzed Trifluoromethylative Ring Expansion of Isatins and Isatin Ketimines with Trifluorodiazoethane. Chem Asian J 2020; 15:757-761. [PMID: 32017397 DOI: 10.1002/asia.201901799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Indexed: 01/06/2023]
Abstract
A general method for the construction of trifluoromethylated 2-quinolinones has been established herein by using a trifluoromethylative ring expansion of isatin with trifluorodiazoethane. The strategy provides a platform for the rapid synthesis of a wide range of substituted 3-hydroxy-4-trifluoromethyl-2-quinolinones. This operationally simple and robust Ag-catalyzed protocol successfully transforms isatin ketimines to 3-amino-4-trifluoromethylquinolinones in excellent yields. The utility of this novel method is further illustrated by the conversion of the products into various synthetically and medicinally relevant molecules.
Collapse
Affiliation(s)
- Muhammad Fahad Jamali
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, 110025, New Delhi, India
| | - Ekta Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anuj Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, 110025, New Delhi, India
| |
Collapse
|
30
|
He F, Pei C, Koenigs RM. Photochemical fluoro-amino etherification reactions of aryldiazoacetates with NFSI under stoichiometric conditions. Chem Commun (Camb) 2020; 56:599-602. [DOI: 10.1039/c9cc08888a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochemical three-component reaction is reported that allows the introduction of fluorine and a short polyether side chain in high efficiency under metal-free conditions.
Collapse
Affiliation(s)
- Feifei He
- RWTH Aachen University
- Institute of Organic Chemistry
- 52074 Aachen
- Germany
| | - Chao Pei
- RWTH Aachen University
- Institute of Organic Chemistry
- 52074 Aachen
- Germany
| | - Rene M. Koenigs
- RWTH Aachen University
- Institute of Organic Chemistry
- 52074 Aachen
- Germany
| |
Collapse
|
31
|
Zhou MD, Peng Z, Li L, Wang H. Visible-light-promoted organic dye catalyzed perfluoroalkylation of hydrazones under mild conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Metal- and additive-free cascade trifluoroethylation/cyclization of organic isoselenocyanates by phenyl(2,2,2-trifluoroethyl)iodonium triflate. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|