1
|
Jantaharn P, Mongkolthanaruk W, Suwannasai N, Senawong T, Boonmak J, Youngme S, McCloskey S. Hypoxylonone, a new oxa-bridged seven-membered ring analog from fungus Hypoxylon cf. subgilvum SWUF15-004. Nat Prod Res 2024; 38:415-422. [PMID: 36125412 DOI: 10.1080/14786419.2022.2125968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
A new oxa-bridged seven-membered ring analog, hypoxylonone (1), and thirteen known compounds (2-14) were isolated from fungus Hypoxylon cf. subgilvum SWUF15-004. The structures were elucidated by the analysis of spectroscopic (IR, 1 D and 2 D NMR), HRESIMS and X-ray diffraction (MoKα) data. Several isolated compounds were evaluated for cytotoxicity against four human cancer cell lines (HeLa, HT29, MCF-7, A549). Compound 1 exhibited weak inhibitory effects of the nitric oxide production in RAW264.7 cells. Compounds 8 and 9 exhibited slight cytotoxicity.
Collapse
Affiliation(s)
- Phongphan Jantaharn
- Natural Products Research Unit, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wiyada Mongkolthanaruk
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttika Suwannasai
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sirirath McCloskey
- Natural Products Research Unit, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Wei K, Zheng X, Zhang H. Recent applications of dioxinone derivatives for macrocyclic natural product and terpenoid synthesis. Front Chem 2022; 10:1030541. [PMID: 36578354 PMCID: PMC9790985 DOI: 10.3389/fchem.2022.1030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Dioxinone derivatives, a class of acetoacetate derivatives, have attracted widespread attention because of their multiple reactive sites, high reactivity, unique chemical properties, and potential synthetic applications. The dioxinone group is also stable under a wide range of reaction conditions, including strong acids, as well as a variety of transition-metal-catalysed processes, such as olefin metathesis and Pd-mediated cross-coupling. The inherent reactivity and diverse applications of dioxinones make them valuable reactive intermediates in organic synthesis. The conversion of dioxinones to acylketenes and their subsequent nucleophilic capture is also an excellent strategy for synthesising β-keto acid derivatives, which can be applied even in complex molecular synthesis. This review focuses on the recent advances in the application of dioxinones in synthetic method research and the total synthesis of natural products, highlighting the exceptional utility of these synthetic methodologies in the construction of macrocyclic cores and terpenoid skeletons. In particular, successful transformations of dioxinone fragments are discussed.
Collapse
Affiliation(s)
- Kai Wei
- Henan Engineering Research Center of Funiu Mountain’s Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan, Henan, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, China
| | - Xinhua Zheng
- Henan Engineering Research Center of Funiu Mountain’s Medical Resources Utilization and Molecular Medicine, School of Medical Sciences, Pingdingshan University, Pingdingshan, Henan, China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Chen W, Ma Y, He W, Wu Y, Huang Y, Zhang Y, Tian H, Wei K, Yang X, Zhang H. Structure units oriented approach towards collective synthesis of sarpagine-ajmaline-koumine type alkaloids. Nat Commun 2022; 13:908. [PMID: 35177620 PMCID: PMC8854706 DOI: 10.1038/s41467-022-28535-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sarpagine-Ajmaline-Koumine type monoterpenoid indole alkaloids represent a fascinating class of natural products with polycyclic and cage-like structures, interesting biological activities, and related biosynthetic origins. Herein we report a unified approach towards the asymmetric synthesis of these three types of alkaloids, leading to a collective synthesis of 14 natural alkaloids. Among them, akuammidine, 19-Z-akuammidine, vincamedine, vincarine, quebrachidine, vincamajine, alstiphylianine J, and dihydrokoumine are accomplished for the first time. Features of our synthesis are a new Mannich-type cyclization to construct the key indole-fused azabicyclo[3.3.1]nonane common intermediate, a SmI2 mediated coupling to fuse the aza-bridged E-ring, stereoselective olefinations to install either the 19-E or 19-Z terminal alkenes presented in the natural alkaloids, and an efficient iodo-induced cyclization to establish the two vicinal all-carbon quaternary centers in the Koumine-type alkaloids.
Collapse
Affiliation(s)
- Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yonghui Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Wenyan He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yinxia Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yuancheng Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yipeng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Hongchang Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Kai Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
4
|
Qin XL, Wu GJ, Han FS. Synthetic Studies on the Synthesis of Toxicodenane A and 8,11- epi-Toxicodenane A. J Org Chem 2022; 87:3223-3233. [PMID: 35041787 DOI: 10.1021/acs.joc.1c02928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diverse synthesis of oxatricyclotridecanes and oxatricyclododecanes, which are the core structures of toxicodenane A and its skeletal analogues, via a unified manner is presented. The stereochemistry at the bridgehead position of the oxa-bridged bicycle could be efficiently controlled through a diastereoselective anti- and syn-Grignard allylation reaction by appropriately tuning the reaction conditions such as the solvent, the counterion of the Grignard reagent, the substrate, or a combination of these. The ring size could be precisely elaborated via a Lewis acid-mediated intramolecular transacetalation and Prins cyclization cascade reaction by varying the steric hindrance of olefin moiety. Namely, substrates bearing a terminally unsubstituted olefinic functionality afforded oxatricyclotridecanes with an overwhelming preference, while those bearing a dimethyl-substituted olefinic group produced exclusively oxatricyclododecanes. The wide utility and generality of the above key transformations are highlighted by the applications in the unified synthesis of (±)-toxicodenance A, (+)-toxicodenane A, (+)-8,11-epi-toxicodenane A, and other oxatricyclic cores with different stereochemistries and ring sizes.
Collapse
Affiliation(s)
- Xu-Long Qin
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Jie Wu
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fu-She Han
- CAS Key Lab of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Qin XL, Wu GJ, Han FS. Enantioselective Total Synthesis and Absolute Configuration Assignment of (+)-Toxicodenane A. Org Lett 2021; 23:8570-8574. [PMID: 34652928 DOI: 10.1021/acs.orglett.1c03293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present the first enantioselective total synthesis and absolute configuration assignment of (+)-toxicodenane A via a nine-step sequence from the readily available material. The synthesis features a desymmetric enantioselective reduction of 2,2-disubstituted 1,3-cyclohexanedione for the synthesis of a chiral 2,2-disubstituted 3-hydroxy cyclohexanone building block, a highly diastereoselective Grignard reaction for the incorporation of an allyl group, and a Lewis acid-mediated intramolecular transacetalation and Prins cascade reaction for the construction of oxa-bridged bicyclic rings.
Collapse
Affiliation(s)
- Xu-Long Qin
- Key Lab of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Jie Wu
- Key Lab of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fu-She Han
- Key Lab of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Wang M, Yin L, Cheng L, Yang Y, Li Y. Straightforward Stereoselective Synthesis of Seven-Membered Oxa-Bridged Rings through In Situ Generated Cycloheptenol Derivatives. J Org Chem 2021; 86:12956-12963. [PMID: 34436895 DOI: 10.1021/acs.joc.1c01648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An iodine-mediated stereoselective synthesis of seven-membered oxa-bridged rings via in situ generated cycloheptenols was reported. This process was realized through the combination of C-C σ-bond cleavage and C-O bond-forming reactions in a one-pot fashion from simple and easily accessible raw materials. The formation of carbon radicals initiated by I2 was the key to the reaction.
Collapse
Affiliation(s)
- Mengdan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqiang Yin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yajie Yang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
7
|
Abrams R, Jesani MH, Browning A, Clayden J. Triarylmethanes and their Medium-Ring Analogues by Unactivated Truce-Smiles Rearrangement of Benzanilides. Angew Chem Int Ed Engl 2021; 60:11272-11277. [PMID: 33830592 PMCID: PMC8252078 DOI: 10.1002/anie.202102192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Intramolecular nucleophilic aromatic substitution (Truce–Smiles rearrangement) of the anions of 2‐benzyl benzanilides leads to triarylmethanes in an operationally simple manner. The reaction succeeds even without electronic activation of the ring that plays the role of electrophile in the SNAr reaction, being accelerated instead by the preferred conformation imposed by the tertiary amide tether. The amide substituent of the product may be removed or transformed into alternative functional groups. A ring‐expanding variant (n to n+4) of the reaction provided a route to doubly benzo‐fused medium ring lactams of 10 or 11 members. Hammett analysis returned a ρ value consistent with the operation of a partially concerted reaction mechanism.
Collapse
Affiliation(s)
- Roman Abrams
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Mehul H Jesani
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Alex Browning
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
8
|
Abrams R, Jesani MH, Browning A, Clayden J. Triarylmethanes and their Medium‐Ring Analogues by Unactivated Truce–Smiles Rearrangement of Benzanilides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Mehul H. Jesani
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Alex Browning
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol, Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
9
|
Millward MJ, Ellis E, Ward JW, Clayden J. Hydantoin-bridged medium ring scaffolds by migratory insertion of urea-tethered nitrile anions into aromatic C-N bonds. Chem Sci 2020; 12:2091-2096. [PMID: 34163972 PMCID: PMC8179327 DOI: 10.1039/d0sc06188c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Bicyclic or tricyclic nitrogen-containing heterocyclic scaffolds were constructed rapidly by intramolecular nucleophilic aromatic substitution of metallated nitriles tethered by a urea linkage to a series of electronically unactivated heterocyclic precursors. The substitution reaction constitutes a ring expansion, enabled by the conformationally constrained tether between the nitrile and the heterocycle. Attack of the metallated urea leaving group on the nitrile generates a hydantoin that bridges the polycyclic products. X-ray crystallography reveals ring-dependant strain within the hydantoin.
Collapse
Affiliation(s)
- Makenzie J Millward
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Emily Ellis
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - John W Ward
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
10
|
Liu Q, Jin F, Kang M, Song H, Chen J. Polymeric ionic liquid as novel catalyst for the Prins reaction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Padmaja P, Reddy PN, Subba Reddy BV. Tandem Prins cyclizations for the construction of oxygen containing heterocycles. Org Biomol Chem 2020; 18:7514-7532. [PMID: 32940271 DOI: 10.1039/d0ob00960a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tandem Prins cyclization is a versatile method for the synthesis of fused/bridged/spirotetrahydropyran scaffolds. Therefore, it has become a powerful tool for the stereoselective synthesis of oxygen/nitrogen containing heterocycles. Indeed, previous review articles on Prins spirocyclization illustrate the synthesis of spirotetrahydropyran derivatives and the aza-Prins reaction demonstrates its application in the total synthesis of natural products. The current review is devoted specifically to highlight tandem Prins cyclizations for the construction of fused scaffolds and related frameworks with a particular emphasis on recent applications. The mechanistic aspects and the scope of the methods are briefly discussed herein.
Collapse
Affiliation(s)
- P Padmaja
- Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | | | | |
Collapse
|
12
|
Chen X, Jiang Y, Geng H, Liu X, Huang Y, Lu J, Gao C, Zhang S, Zhang J, Wang W. Aldehydes Switch Regioselectivity: a Prins Cyclization Strategy for the Synthesis of Indoline‐fused THFs and Indole‐fused Oxepanes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaobei Chen
- State Key Laboratory of Bioengineering Reactor, and Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science & Technology Shanghai 200237 People's Republic of China
| | - Yuanrui Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow University 199 Ren'ai Road Suzhou, Jiangsu 215123 People's Republic of China
| | - Huihui Geng
- State Key Laboratory of Bioengineering Reactor, and Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science & Technology Shanghai 200237 People's Republic of China
| | - Xingyu Liu
- State Key Laboratory of Bioengineering Reactor, and Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science & Technology Shanghai 200237 People's Republic of China
| | - Yizhuo Huang
- State Key Laboratory of Bioengineering Reactor, and Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science & Technology Shanghai 200237 People's Republic of China
| | - Jingwei Lu
- State Key Laboratory of Bioengineering Reactor, and Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science & Technology Shanghai 200237 People's Republic of China
| | - Chenjing Gao
- State Key Laboratory of Bioengineering Reactor, and Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science & Technology Shanghai 200237 People's Republic of China
| | - Shilei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow University 199 Ren'ai Road Suzhou, Jiangsu 215123 People's Republic of China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji HospitalShanghai Jiao-Tong University School of Medicine Shanghai 200025 People's Republic of China
| | - Wei Wang
- State Key Laboratory of Bioengineering Reactor, and Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science & Technology Shanghai 200237 People's Republic of China
- Department of Pharmacology and Toxicology, and BIO5 InstituteUniversity of Arizona 1703 E. Mabel St., P. O. Box 210207 Tucson AZ 85721–0207 USA
| |
Collapse
|
13
|
Hu YJ, Li LX, Han JC, Min L, Li CC. Recent Advances in the Total Synthesis of Natural Products Containing Eight-Membered Carbocycles (2009-2019). Chem Rev 2020; 120:5910-5953. [PMID: 32343125 DOI: 10.1021/acs.chemrev.0c00045] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural products containing eight-membered carbocycles constitute a class of structurally intriguing and biologically important molecules such as the famous diterpenes taxol and vinigrol. Such natural products are being increasingly investigated because of their fascinating architectural features and potent medicinal properties. However, synthesis of natural products with cyclooctane moieties has proved to be highly challenging. This review highlights the recently completed total syntheses of natural products with eight-membered carbocycles with a focus on strategic considerations. A collection of 27 representative studies from the literature covering the decade from 2009 to 2019 is described in chronological order with relevant studies grouped together, including syntheses of the same natural product by different research groups using different strategies. Finally, a summary and outlook including a discussion of the major features of each strategy used in the syntheses are presented. This review illustrates the diversity and creativity in the elegant synthetic designs of eight-membered carbocycles. We hope this review will provide timely illumination and beneficial guidance for future synthetic efforts for organic chemists who are interested in this area.
Collapse
Affiliation(s)
- Ya-Jian Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Li-Xuan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
14
|
An J, Pedrazzani R, Monari M, Marin-Luna M, Lopez CS, Bandini M. Site-selective synthesis of 1,3-dioxin-3-ones via a gold(i) catalyzed cascade reaction. Chem Commun (Camb) 2020; 56:7734-7737. [DOI: 10.1039/d0cc02703k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel gold(i)-catalyzed protocol for the synthesis of 4H-1,3-dioxin-3-ones is presented.
Collapse
Affiliation(s)
- Juzeng An
- Dipartimento di Chimica “Giacomo Ciamician”
- Alma Mater Studiorum – Università di Bologna
- Bologna
- Italy
| | - Riccardo Pedrazzani
- Dipartimento di Chimica “Giacomo Ciamician”
- Alma Mater Studiorum – Università di Bologna
- Bologna
- Italy
| | - Magda Monari
- Dipartimento di Chimica “Giacomo Ciamician”
- Alma Mater Studiorum – Università di Bologna
- Bologna
- Italy
| | - Marta Marin-Luna
- Departamento de Química Orgánica
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - Carlos Silva Lopez
- Departamento de Química Orgánica
- Universidade de Vigo
- 36310 Vigo
- Spain
- CITACA – Clúster de Investigación y Transferencia Agroalimentaria del Campus Auga
| | - Marco Bandini
- Dipartimento di Chimica “Giacomo Ciamician”
- Alma Mater Studiorum – Università di Bologna
- Bologna
- Italy
- CINMPIS
| |
Collapse
|