1
|
Nazeri MT, Ahmadi M, Ghasemi M, Shaabani A, Notash B. The new synthesis of pyrrole-fused dibenzo[ b, f][1,4]oxazepine/thiazepines by the pseudo-Joullié-Ugi reaction via an unexpected route with high chemoselectivity. Org Biomol Chem 2023; 21:4095-4108. [PMID: 37128973 DOI: 10.1039/d3ob00250k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel and unexpected route for synthesizing pyrrole-fused dibenzoxazepines/thiazepines has been designed based on a modified Ugi reaction of cyclic imines with isocyanides and acetylenedicarboxylates under catalyst-free conditions. Mechanism investigation indicates that this process is carried out through the production of zwitterion species (Huisgen's 1,4-dipole), which is a key intermediate in the chemoselectivity of products. This Huisgen's 1,4-dipole is trapped in situ with isocyanides and a variety of pyrrole-fused dibenzoxazepines/thiazepines are synthesized in a simple one-pot operation with high yields and chemoselectivity. This strategy opens a new route in Ugi reactions (pseudo-Joullié-Ugi reaction) for the synthesis of pyrrole-fused heterocycles as special pharmaceutical scaffolds.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran.
| | - Masoomeh Ahmadi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran.
| | - Maryam Ghasemi
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran.
| | - Ahmad Shaabani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran.
- Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Behrouz Notash
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran.
| |
Collapse
|
2
|
Peng Y, Huang X, Wang F. Near-infrared emitting gold-silver nanoclusters with large Stokes shifts for two-photon in vivo imaging. Chem Commun (Camb) 2021; 57:13012-13015. [PMID: 34806718 DOI: 10.1039/d1cc04445a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared emitting bi-metallic gold/silver nanoclusters with large Stokes shifts were manufactured through one-pot synthesis. The gold/silver nanoclusters exhibit strong NIR fluorescence due to the silver effect, which can be applied as a two-photon fluorescent contrast agent for in vivo bioimaging.
Collapse
Affiliation(s)
- Yaowei Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
An JM, Moon H, Verwilst P, Shin J, Kim BM, Park CK, Kim JS, Yeo SG, Kim HY, Kim D. Human Glioblastoma Visualization: Triple Receptor-Targeting Fluorescent Complex of Dye, SIWV Tetra-Peptide, and Serum Albumin Protein. ACS Sens 2021; 6:2270-2280. [PMID: 34100604 DOI: 10.1021/acssensors.1c00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence guided surgery (FGS) has been highlighted in the clinical site for guiding surgical procedures and providing the surgeon with a real-time visualization of the operating field. FGS is a powerful technique for precise surgery, particularly tumor resection; however, clinically approved fluorescent dyes have often shown several limitations during FGS, such as non-tumor-targeting, low in vivo stability, insufficient emission intensity, and low blood-brain barrier penetration. In this study, we disclose a fluorescent dye complex, peptide, and protein for the targeted visualization of human glioblastoma (GBM) cells and tissues. Our noble triple receptor-targeting fluorescent complex (named BSA-OXN-SIWV) consists of (i) dipolar oxazepine dye (OXN), which has high stability, low cytotoxicity, bright fluorescence, and two-photon excitable, (ii) tetra-peptide (SIWV) for the targeting of the caveolin-1 receptor, and (iii) bovine serum-albumin (BSA) protein for the targeting of albondin (gp60) and secreted protein acidic and rich in cysteine receptor. The photophysical properties and binding mode of BSA-OXN-SIWV were analyzed, and the imaging of GBM cell lines and human clinical GBM tissues were successfully demonstrated in this study. Our findings hold great promise for the application of BSA-OXN-SIWV to GBM identification and the surgery at clinical sites, as a new FGS agent.
Collapse
Affiliation(s)
- Jong Min An
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heejo Moon
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter Verwilst
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, 3000 Leuven, Belgium
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - B. Moon Kim
- Department of Chemistry, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University, College of Medicine, Seoul 03080, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo Young Kim
- R&D Division of Drug Discovery Department, SPARK Biopharma, Seoul 08791, Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Jung Y, Kim BW, Jung J, Kim BM, Kim D. Liposomal‐Encapsulated Near‐Infrared Fluorophore Based on
π‐Extended
Dipolar Naphthalene Platform and Its Imaging Applications in Human Cancer Cells. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuna Jung
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul 02447 Republic of Korea
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences Seoul National University Seoul 08826 Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul 02447 Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University Seoul 02447 Republic of Korea
| | - B. Moon Kim
- Department of Chemistry, College of Natural Sciences Seoul National University Seoul 08826 Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul 02447 Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University Seoul 02447 Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University Seoul 02447 Republic of Korea
| |
Collapse
|
5
|
Hoshi K, Sanagawa Y, Umebayashi R, Tabata A, Nagamune H, Hase E, Minamikawa T, Yasui T, Yoshida Y, Minagawa K, Kawamura Y, Imada Y, Yagishita F. Synthesis and Optical Properties of Quadrupolar Pyridinium Salt and Its Application as Bioimaging Agent. CHEM LETT 2020. [DOI: 10.1246/cl.200604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keita Hoshi
- Department of Applied Chemistry, Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Yohei Sanagawa
- Department of Applied Chemistry, Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Ryuta Umebayashi
- Department of Applied Chemistry, Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Atsushi Tabata
- Department of Bioscience and Bioindustry, 2-1 Minamijosanjima, Tokushima 770-8513, Japan
| | - Hideaki Nagamune
- Department of Bioscience and Bioindustry, 2-1 Minamijosanjima, Tokushima 770-8513, Japan
| | - Eiji Hase
- Institute of Post-LED Photonics, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
- Research Cluster on “Multi-scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer”, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Takeo Minamikawa
- Institute of Post-LED Photonics, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
- Research Cluster on “Multi-scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer”, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Takeshi Yasui
- Institute of Post-LED Photonics, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
- Research Cluster on “Multi-scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer”, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keiji Minagawa
- Department of Applied Chemistry, Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Yasuhiko Kawamura
- Department of Applied Chemistry, Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Yasushi Imada
- Department of Applied Chemistry, Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | - Fumitoshi Yagishita
- Department of Applied Chemistry, Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
- Institute of Post-LED Photonics, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
- Research Cluster on “Multi-scale Vibrational Microscopy for Comprehensive Diagnosis and Treatment of Cancer”, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| |
Collapse
|
6
|
Yadav J, Pawar AP, Nagare YK, Iype E, Rangan K, Ohshita J, Kumar D, Kumar I. Direct Amine-Catalyzed Enantioselective Synthesis of Pentacyclic Dibenzo[ b, f][1,4]oxazepine/Thiazepine-Fused Isoquinuclidines along with DFT Calculations. J Org Chem 2020; 85:14094-14108. [PMID: 33030896 DOI: 10.1021/acs.joc.0c02141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A direct protocol for the asymmetric synthesis of dibenzoxazepine/thiazepine-fused [2.2.2] isoquinuclidines is developed. The reaction proceeds through a proline-catalyzed direct Mannich reaction followed by an intramolecular aza-Michael cascade sequence between 2-cyclohexene-1-one and various tricyclic imines, like dibenzoxazepines/thiazepines, as an overall [4 + 2] aza-Diels-Alder reaction. A series of pentacyclic isoquinuclidines have been prepared, with complete endo-selectivity, in good to high yields and excellent enantioselectivity (>99:1). Density functional theory (DFT) calculations further support the observed high stereochemical outcome of the reaction.
Collapse
Affiliation(s)
- Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Eldhose Iype
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai 345055, UAE
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Joji Ohshita
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
7
|
An JM, Kang S, Huh E, Kim Y, Lee D, Jo H, Joung JF, Kim VJ, Lee JY, Dho YS, Jung Y, Hur JK, Park C, Jung J, Huh Y, Ku JL, Kim S, Chowdhury T, Park S, Kang JS, Oh MS, Park CK, Kim D. Penta-fluorophenol: a Smiles rearrangement-inspired cysteine-selective fluorescent probe for imaging of human glioblastoma. Chem Sci 2020; 11:5658-5668. [PMID: 32874505 PMCID: PMC7449700 DOI: 10.1039/d0sc01085e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/08/2020] [Indexed: 01/20/2023] Open
Abstract
Two of the most critical factors for the survival of glioblastoma (GBM) patients are precision diagnosis and the tracking of treatment progress. At the moment, various sophisticated and specific diagnostic procedures are being used, but there are relatively few simple diagnosis methods. This work introduces a sensing probe based on a turn-on type fluorescence response that can measure the cysteine (Cys) level, which is recognized as a new biomarker of GBM, in human-derived cells and within on-site human clinical biopsy samples. The Cys-initiated chemical reactions of the probe cause a significant fluorescence response with high selectivity, high sensitivity, a fast response time, and a two-photon excitable excitation pathway, which allows the imaging of GBM in both mouse models and human tissue samples. The probe can distinguish the GBM cells and disease sites in clinical samples from individual patients. Besides, the probe has no short or long-term toxicity and immune response. The present findings hold promise for application of the probe to a relatively simple and straightforward following of GBM at clinical sites.
Collapse
Affiliation(s)
- Jong Min An
- Department of Biomedical Science , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
| | - Sangrim Kang
- Department of Anatomy and Neurobiology , College of Medicine , Kyung Hee University , Seoul 02447 , Korea
- Department of Pathology , College of Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Eugene Huh
- Department of Medical Science of Meridian , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
- Department of Life and Nanopharmaceutical Sciences , Graduate School , Kyung Hee University , Seoul 02447 , Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology , Department of Anatomy and Cell Biology , Seoul National University , College of Medicine , Seoul 03080 , Korea .
- Institute of Allergy and Clinical Immunology , Seoul National University Medical Research Center , Seoul 03080 , Korea
| | - Dahae Lee
- Laboratory of Vitamin C and Antioxidant Immunology , Department of Anatomy and Cell Biology , Seoul National University , College of Medicine , Seoul 03080 , Korea .
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology , Department of Anatomy and Cell Biology , Seoul National University , College of Medicine , Seoul 03080 , Korea .
| | | | - Veronica Jihyun Kim
- Neural Development and Anomaly Laboratory , Department of Anatomy and Cell Biology , Seoul National University , College of Medicine , Seoul 03080 , Korea
| | - Ji Yeoun Lee
- Neural Development and Anomaly Laboratory , Department of Anatomy and Cell Biology , Seoul National University , College of Medicine , Seoul 03080 , Korea
- Division of Pediatric Neurosurgery , Seoul National University, Children's Hospital , Seoul 03080 , Korea
| | - Yun Sik Dho
- Department of Neurosurgery , Seoul National University Hospital , Seoul National University , College of Medicine , Seoul 03080 , Korea .
| | - Yuna Jung
- Department of Biomedical Science , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
| | - Junho K Hur
- Department of Biomedical Science , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
- Department of Pathology , College of Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Chan Park
- Department of Biomedical Science , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
- Department of Anatomy and Neurobiology , College of Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Junyang Jung
- Department of Biomedical Science , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
- Department of Anatomy and Neurobiology , College of Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Youngbuhm Huh
- Department of Biomedical Science , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
- Department of Anatomy and Neurobiology , College of Medicine , Kyung Hee University , Seoul 02447 , Korea
| | - Ja-Lok Ku
- Korean Cell Line Bank , Cancer Research Institute , Seoul National University , College of Medicine , Seoul 03080 , Korea
| | - Sojin Kim
- Department of Neurosurgery , Seoul National University Hospital , Seoul National University , College of Medicine , Seoul 03080 , Korea .
| | - Tamrin Chowdhury
- Department of Neurosurgery , Seoul National University Hospital , Seoul National University , College of Medicine , Seoul 03080 , Korea .
| | - Sungnam Park
- Department of Chemistry , Korea University , Seoul 02841 , Korea .
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology , Department of Anatomy and Cell Biology , Seoul National University , College of Medicine , Seoul 03080 , Korea .
- Institute of Allergy and Clinical Immunology , Seoul National University Medical Research Center , Seoul 03080 , Korea
| | - Myung Sook Oh
- Department of Medical Science of Meridian , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
- Department of Oriental Pharmaceutical Science , Kyung Hee East-West Pharmaceutical Research Institute , Kyung Hee University , Seoul 02447 , Korea
| | - Chul-Kee Park
- Department of Neurosurgery , Seoul National University Hospital , Seoul National University , College of Medicine , Seoul 03080 , Korea .
| | - Dokyoung Kim
- Department of Biomedical Science , Graduate School , Kyung Hee University , Seoul 02447 , Korea .
- Department of Anatomy and Neurobiology , College of Medicine , Kyung Hee University , Seoul 02447 , Korea
- Center for Converging Humanities , Kyung Hee University , Seoul 02447 , Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species , Biomedical Science Institute , School of Medicine , Graduate School , Kyung Hee University , Seoul 02447 , Korea
| |
Collapse
|
8
|
Kim NH, Kim BW, Kim Y, Hur JK, Jung J, Oh Y, Park S, Kim BM, Kim D. Articulated Structures of D-A Type Dipolar Dye with AIEgen: Synthesis, Photophysical Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1939. [PMID: 32325988 PMCID: PMC7216255 DOI: 10.3390/ma13081939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022]
Abstract
Articulated structures of naphthalene-based donor (D)-acceptor (A) type dipolar dye and aggregation-induced emission luminogen (AIEgen) based on tetraphenylethylene (TPE) were synthesized, and their photophysical properties were analyzed for the first time. There are many fluorophore backbones, which have dipolar structure and AIEgen. However, there has been neither property analysis nor research that closely articulates DA and AIE through non-conjugation linker. We have therefore prepared two representative fluorophores; DA-AIE series (DA-AIE-M and DA-AIE-D), and characterized their UV/vis absorption and emission properties with quantum chemical calculations. In addition, we utilized the unique photophysical properties of DA-AIE-D for monitoring a trace of dimethyl sulfoxide (DMSO) in aqueous media, including real water samples.
Collapse
Affiliation(s)
- Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (N.H.K.); (J.K.H.); (J.J.)
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea;
| | - Youngseo Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea;
| | - Junho K. Hur
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (N.H.K.); (J.K.H.); (J.J.)
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (N.H.K.); (J.K.H.); (J.J.)
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Sungnam Park
- Department of Chemistry, Korea University, Seoul 02841, Korea;
| | - B. Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea;
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; (N.H.K.); (J.K.H.); (J.J.)
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
- Center for Converging Humanities, Korea University, Seoul 02841, Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02841, Korea
| |
Collapse
|
9
|
An JM, Moon H, Kim Y, Kang S, Kim Y, Jung Y, Park S, Verwilst P, Kim BM, Kang JS, Kim D. Visualizing mitochondria and mouse intestine with a fluorescent complex of a naphthalene-based dipolar dye and serum albumin. J Mater Chem B 2020; 8:7642-7651. [DOI: 10.1039/d0tb01314e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A fluorophore–protein complex for the visualization of mitochondria and the mouse intestine was developed. The complex formation of a naphthalene-based dipolar dye and serum albumin was identified and its imaging applications were investigated.
Collapse
|
10
|
Godugu K, Gundala TR, Bodapati R, Yadala VDS, Loka SS, Nallagondu CGR. Synthesis, photophysical and electrochemical properties of donor–acceptor type hydrazinyl thiazolyl coumarins. NEW J CHEM 2020. [DOI: 10.1039/d0nj00082e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A practical green MCR strategy has been developed for the synthesis of D–A type hydrazinyl thiazolyl coumarins catalyzed by an environmentally compatible MMT K10 clay in water at RT.
Collapse
Affiliation(s)
- Kumar Godugu
- Department of Chemistry
- School of Physical Sciences
- Yogi Vemana University
- Kadapa 516 003
- India
| | | | - Ramakrishna Bodapati
- School of Chemistry
- University of Hyderabad
- Central University P.O
- Hyderabad 500 046
- India
| | | | - Subramanyam Sarma Loka
- Department of Chemistry
- School of Physical Sciences
- Yogi Vemana University
- Kadapa 516 003
- India
| | | |
Collapse
|
11
|
Hydrazine-Selective Fluorescent Turn-On Probe Based on Ortho-Methoxy-Methyl-Ether ( o-MOM) Assisted Retro-aza-Henry Type Reaction. SENSORS 2019; 19:s19204525. [PMID: 31627477 PMCID: PMC6832147 DOI: 10.3390/s19204525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/30/2023]
Abstract
Hydrazine (N2H4) is one of the most widely used industrial chemicals that can be utilized as a precursor of pesticides, pharmaceutics, and rocket propellant. Due to its biological and environmental toxicity with potential health risks, various sensing tools have been developed. Among them, fluorescence-based molecular sensing systems have been highlighted due to its simple-operation, high selectivity and sensitivity, and biocompatibility. In our recent report, we disclosed a ratiometric type fluorescent probe, called HyP-1, for the detection of hydrazine, which is based on ortho-methoxy-methyl-ether (o-MOM) moiety assisted hydrazone-formation of the donor (D)-acceptor (A) type naphthaldehyde backbone. As our follow-up research, we disclose a turn-on type fluorescent probe, named HyP-2, as the next-generation hydrazine probe. The sensing rational of HyP-2 is based on the o-MOM assisted retro-aza-Henry type reaction. The dicyanovinyl moiety, commonly known as a molecular rotor, causes significant emission quenching of a fluorescent platform in aqueous media, and its cleavage with hydrazone-formation, which induces a significant fluorescence enhancement. The high selectivity and sensitivity of HyP-2 shows practical explicabilities, including real-time paper strip assay, vapor test, soil analysis, and real water assay. We believe its successful demonstrations suggest further applications into a wide variety of fields.
Collapse
|