1
|
Yu LM, Chen H, Fang W, Cai R, Tao Y, Li Y, Dong H. Recent advances in oxidative dearomatization involving C-H bonds for constructing value-added oxindoles. Org Biomol Chem 2024; 22:7074-7091. [PMID: 39157861 DOI: 10.1039/d4ob00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Exploring three-dimensional chemical space is an important research objective of organic synthetic chemistry. Oxidative dearomatization (ODA) is one of the most important and powerful tools for realizing this goal, because it changes and removes aromatic structures from aromatic compounds to increase levels of saturation and stereoisomerism by direct addition reactions between functional groups with aromatic cores under oxidative conditions. As a hot topic in indole chemistry, the synthetic value of the oxidative dearomatization of indoles has been well recognized and has witnessed rapid development recently, since it could provide convenient and unprecedented access to fabricate high-value-added three-dimensional oxindole skeletons, such as C-quaternary indolones, polycycloindolones and spiroindolones, and be widely applied to the total synthesis of these oxindole alkaloids. Therefore, this article provides a review of recent developments in oxidative dearomatization involving the C-H bonds of indoles. In this article, the features and mechanisms of different types of ODA reactions of indoles are summarized and represented, and asymmetric synthesis methods and their applications are illustrated with examples, and future development trends in this field are predicted at the end.
Collapse
Affiliation(s)
- Le-Mao Yu
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310018, China.
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| | - Haojin Chen
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Wenjing Fang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ruonan Cai
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yi Tao
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yong Li
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaping Dong
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
2
|
Singh G, Marupalli SS, Arockiaraj M, Rajeshkumar V. I 2-Cs 2CO 3 Mediated Intramolecular C2-Amination and Oxidative Rearrangement Cascade of C-3 Phenylthio Indoles: A Route to Synthesize Thiosulfonate-Embedded 2-Iminoindolin-3-ones. J Org Chem 2024; 89:5861-5870. [PMID: 38552213 DOI: 10.1021/acs.joc.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An efficient, transition-metal-free protocol employing I2/Cs2CO3 for the synthesis of thiosulfonate containing 2-iminoindolin-3-ones motifs has been developed from C-3 phenylthio indoles. The reaction proceeded through intramolecular cyclization involving C-N bond formation, leading to the formation of indole-fused benzothiazines as a key intermediate. Remarkably, Cs2CO3 played a crucial role in the reaction as an oxygen source, enabling oxidative rearrangement with [1,4]-sulfonyl migration to furnish the final products with the formation of multiple functional groups such as C═O, C═N, and S-SO2.
Collapse
Affiliation(s)
- Gargi Singh
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Sasi Sree Marupalli
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| |
Collapse
|
3
|
Chakraborty N, Rajbongshi KK, Dahiya A, Das B, Vaishnani A, Patel BK. NIS-initiated photo-induced oxidative decarboxylative sulfoximidation of cinnamic acids. Chem Commun (Camb) 2023; 59:2779-2782. [PMID: 36786510 DOI: 10.1039/d3cc00142c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
N-Iodosuccinimide catalyzed, visible-light-induced oxidative decarboxylative cross-coupling between cinnamic acids and NH-sulfoximines is presented. This strategy results in the formation of α-keto-N-acyl sulfoximines via the construction of two new CO bonds and one C-N bond. The in situ-generated N-iodosulfoximine serves as the light-absorbing species in the absence of any external photosensitizer. The keto carbonyl and amidic carbonyl oxygen in the resulting product originate from dioxygen and water respectively.
Collapse
Affiliation(s)
- Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kamal K Rajbongshi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India. .,Department of Chemistry, Handique Girls' College, Guwahati, 781001, Assam, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Akshar Vaishnani
- Department of Chemistry, REVA University, Bangalore, 560064, Bengaluru, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
4
|
Das R, Kundu T, Basumatary J. Visible light mediated organocatalytic dehydrogenative aza-coupling of 1,3-diones using aryldiazonium salts. RSC Adv 2023; 13:3147-3154. [PMID: 36756411 PMCID: PMC9853514 DOI: 10.1039/d2ra07807d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
An efficient protocol for diazenylation of 1,3-diones under photoredox conditions is presented herein. C-N bond forming Csp3 -H functionalization of cyclic and alkyl diones by unstable aryl diazenyl radicals is achieved through reaction with aryldiazonium tetrafluoroborates by organocatalysts under visible light irradiation. The reaction has wide substrate scope, gives excellent yields, and is also efficient in water as a green solvent. This method provides an easy access to aryldiazenyl derivatives that are useful key starting materials for the synthesis of aza heterocycles as well as potential pharmacophores.
Collapse
Affiliation(s)
- Ramanand Das
- Department of Chemistry, National Institute of Technology Sikkim Ravangla, South Sikkim PIN 737139 India
| | - Taraknath Kundu
- Department of Chemistry, National Institute of Technology Sikkim Ravangla, South Sikkim PIN 737139 India
| | - Joneswar Basumatary
- Department of Chemistry, Sikkim University Tadong, Daragaon, East Sikkim Gangtok PIN 737102 India
| |
Collapse
|
5
|
Sau S, Mal P. Visible-Light Promoted Regioselective Oxygenation of Quinoxalin-2(1 H)-ones Using O 2 as an Oxidant. J Org Chem 2022; 87:14565-14579. [PMID: 36214497 DOI: 10.1021/acs.joc.2c01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-mediated sustainable approach for metal-free oxygenation of quinoxalin-2(1H)-one by employing Mes-Acr-MeClO4 as a photocatalyst without using any additive or cocatalyst is reported here. O2 served as the eco-friendly and green oxidant source for this conversion. In addition, the protocol exhibited high regioselectivity and tolerance toward a broad spectrum of functional groups to furnish quinoxaline-2,3-diones in good to excellent yields.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
6
|
Zhuang W, Zhang J, Ma C, Wright JS, Zhang X, Ni SF, Huang Q. Scalable Electrochemical Aerobic Oxygenation of Indoles to Isatins without Electron Transfer Mediators by Merging with an Oxygen Reduction Reaction. Org Lett 2022; 24:4229-4233. [PMID: 35678516 DOI: 10.1021/acs.orglett.2c01545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An approach to electrochemical oxygenation of indoles leading to isatins was developed by merging with a complementary cathode oxygen reduction reaction. The features of this green protocol include the use of molecular oxygen as the sole oxidant, it being free of an electron transfer mediator, and gram-scale preparation. Mechanistic studies suggested a radical process, and the two oxygen atoms in the isatins were both most likely from molecular oxygen. A detailed mechanism of the reaction utilizing density functional theory calculations was elucidated.
Collapse
Affiliation(s)
- Weihui Zhuang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - James S Wright
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, Surrey, U.K
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
7
|
Dahiya A, Patel BK. The Rich Legacy and Bright Future of Transition-Metal Catalyzed Peroxide Based Radical Reactions. CHEM REC 2021; 21:3589-3612. [PMID: 34137502 DOI: 10.1002/tcr.202100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 01/19/2023]
Abstract
This personal account is mainly focused on the author's involvement in the field of transition metal-catalyzed peroxide based radical reactions. Over the past decades, radical chemistry has flourished and become crucial in contemporary synthetic organic chemistry. Owing to the presence of a single electron in one orbital, radicals are very unstable and react very fast. To carry out desired transformations and to control the side reactions the stabilizations of these radicals is essential. Fortunately, the implementation of a suitable transition metal and peroxide combination into the radical reactions have proved beneficial. Transition metals not only stabilizes the radicals but also protects them from being quenched by undesired homo-coupling or fragmentation. Transition metal-catalyzed radical-radical reactions provide an innovative way for the construction and derivatization of carbocycles and heterocycles. The objective of this review is to give an overview of the construction and derivatization of heterocycles through the lens of radical chemistry, mainly focusing on research work done by our group.
Collapse
Affiliation(s)
- Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, India
| |
Collapse
|
8
|
Pali P, Shukla G, Saha P, Singh MS. Photo-oxidative Ruthenium(II)-Catalyzed Formal [3 + 2] Heterocyclization of Thioamides to Thiadiazoles. Org Lett 2021; 23:3809-3813. [PMID: 33956460 DOI: 10.1021/acs.orglett.1c00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An operationally simple and sustainable one-pot photo-oxidative formal [3 + 2] heterocyclization of β-ketothioamides with aryldiazonium salts catalyzed by Ru(bpy)3Cl2 has been realized to provide 2,4-disubstituted 5-imino-1,2,3-thiadiazoles in good to high yields under mild reaction conditions for the first time. The reaction proceeded via an α-phenylhydrazone adduct of thioamides leading to 1,2,3-thiadiazoles via N-S bond formation at room temperature. Notably, the products possess Z-stereochemistry with regard to the exocyclic C═N double bond at the 5-position of the ring.
Collapse
Affiliation(s)
- Pragya Pali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priya Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
9
|
Patel SM, P EP, Bakthadoss M, Sharada DS. Photocatalytic Visible-Light-Induced Nitrogen Insertion via Dual C(sp 3)-H and C(sp 2)-H Bond Functionalization: Access to Privileged Imidazole-based Scaffolds. Org Lett 2021; 23:257-261. [PMID: 33373256 DOI: 10.1021/acs.orglett.0c03269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we have demonstrated a visible-light-mediated metal-free organic-dye-catalyzed dehydrogenative N-insertion leading to highly substituted imidazoles and privileged dihydroisoquinoline-based imidazole derivatives via C(sp3)-H and C(sp2)-H bond functionalization. A sustainable, convenient, metal-free azidation/C-H aminative cyclization approach in the absence of stoichiometric oxidants is presented. This protocol involves a rare photoinduced iminyl radical as a key intermediate for the "N" insertion.
Collapse
Affiliation(s)
- Srilaxmi M Patel
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| | - Ermiya Prasad P
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| | | | - Duddu S Sharada
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| |
Collapse
|
10
|
Bhattacharjee P, Bora U. Organocatalytic dimensions to the C–H functionalization of the carbocyclic core in indoles: a review update. Org Chem Front 2021. [DOI: 10.1039/d0qo01466d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A review highlighting important research findings in remote C–H activation processes using effectual organocatalytic perspectives. The challenging indole carbocyclic ring positions were successfully accessed with proper regio- and stereocontrols.
Collapse
Affiliation(s)
| | - Utpal Bora
- Department of Chemical Sciences
- Tezpur University
- Tezpur
- India
| |
Collapse
|
11
|
Qin J, Luo M, An D, Li J. Electrochemical 1,2‐Diarylation of Alkenes Enabled by Direct Dual C–H Functionalizations of Electron‐Rich Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing‐Hao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - Mu‐Jia Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - De‐Lie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - Jin‐Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education) Hunan Normal University Changsha 410081 China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
12
|
Qin J, Luo M, An D, Li J. Electrochemical 1,2‐Diarylation of Alkenes Enabled by Direct Dual C–H Functionalizations of Electron‐Rich Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2020; 60:1861-1868. [DOI: 10.1002/anie.202011657] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jing‐Hao Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - Mu‐Jia Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - De‐Lie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
| | - Jin‐Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha 410082 China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education) Hunan Normal University Changsha 410081 China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| |
Collapse
|
13
|
Zheng L, Tao K, Guo W. Recent Developments in Photo‐Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| |
Collapse
|
14
|
Rakshit A, Kumar P, Alam T, Dhara H, Patel BK. Visible-Light-Accelerated Pd-Catalyzed Cascade Addition/Cyclization of Arylboronic Acids to γ- and β-Ketodinitriles for the Construction of 3-Cyanopyridines and 3-Cyanopyrrole Analogues. J Org Chem 2020; 85:12482-12504. [DOI: 10.1021/acs.joc.0c01703] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Prashant Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Hirendranath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
15
|
Zhang Z, Yi D, Zhang M, Wei J, Lu J, Yang L, Wang J, Hao N, Pan X, Zhang S, Wei S, Fu Q. Photocatalytic Intramolecular [2 + 2] Cycloaddition of Indole Derivatives via Energy Transfer: A Method for Late-Stage Skeletal Transformation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01841] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhijie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Min Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ji Lu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lin Yang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Na Hao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Shiqi Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Siping Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiang Fu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
16
|
Liu S, Zhao F, Chen X, Deng G, Huang H. Aerobic Oxidative Functionalization of Indoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saiwen Liu
- College of Materials and Chemical Engineering Hunan City University Yiyang 413000 Hunan People's Republic of China
| | - Feng Zhao
- Key Laboratory for Antibody-based Drug and Intelligent Delivery System of Hunan Province Key Laboratory of Dong Medicine of Hunan Province School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Xing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
17
|
Wang X, Dong J, Li Y, Liu Y, Wang Q. Visible-Light-Mediated Manganese-Catalyzed Allylation Reactions of Unactivated Alkyl Iodides. J Org Chem 2020; 85:7459-7467. [PMID: 32383380 DOI: 10.1021/acs.joc.0c00861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a protocol for visible-light-mediated allylation reactions between unactivated alkyl iodides and allyl sulfones under mild conditions with catalysis by inexpensive and readily available Mn2(CO)10. This protocol is compatible with a wide array of sensitive functional groups and has a broad substrate scope with regard to both alkyl iodides and allyl sulfones.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
18
|
Rogers D, Hopkins MD, Rajagopal N, Varshney D, Howard HA, LeBlanc G, Lamar AA. U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics. ACS OMEGA 2020; 5:7693-7704. [PMID: 32280913 PMCID: PMC7144131 DOI: 10.1021/acsomega.0c00631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Seven FDA-certified food dyes have been investigated as organocatalysts. As a result, Fast Green FCF and Brilliant Blue FCF have been discovered as catalysts for the chlorination of a wide range of arenes and heteroarenes in moderate to excellent yields and high regioselectivity. Mechanistic investigations of the separate systems indicate that different modes of activation are in operation, with Fast Green FCF being a light-promoted photoredox catalyst that is facilitating a one-electron oxidation of N-chlorosuccinimide (NCS) and Brilliant Blue FCF serving as a chlorine-transfer catalyst in its sulfonphthalein form with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) as stoichiometric chlorine source. Dearomatization of naphthol and indole substrates was observed in some examples using the Brilliant Blue/DCDMH system.
Collapse
|
19
|
Ghosh P, Mondal S, Hajra A. tert-Butyl Hydroperoxide-Mediated Oxo-Sulfonylation of 2H-Indazoles with Sulfinic Acid toward Indazol-3(2H)-ones. Org Lett 2020; 22:1086-1090. [DOI: 10.1021/acs.orglett.9b04617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Susmita Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
20
|
Shukla G, Dahiya A, Alam T, Patel BK. Visible Light‐Mediated C2‐Quaternarization of N‐Alkyl Indoles through Oxidative Dearomatization using Ir(III) Catalyst. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gaurav Shukla
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 Assam India
| | - Anjali Dahiya
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 Assam India
| | - Tipu Alam
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 Assam India
| | - Bhisma K. Patel
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati- 781039 Assam India
| |
Collapse
|