1
|
Sivakumar G, Suresh AK, Padhy SR, Balaraman E. Double dehydrogenative coupling of amino alcohols with primary alcohols under Mn(I) catalysis. Chem Commun (Camb) 2024; 60:13606-13609. [PMID: 39484689 DOI: 10.1039/d4cc03595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we unveil a method for synthesizing substituted pyrrole and pyrazine compounds via a double dehydrogenative coupling of amino alcohols with primary alcohols, facilitated by Mn(I)-PNP catalysis, which uniquely enables the simultaneous formation of C-C and C-N bonds.
Collapse
Affiliation(s)
- Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Smruti Rekha Padhy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| |
Collapse
|
2
|
R T, Kumar MH, Ankalgi V, Shaikh SF, Al-Enizi AM, Małecki JG, Kshirsagar UA, Rout CS, Dateer RB. Green Approach for the Synthesis of 2-Phenyl-2 H-indazoles and Quinazoline Derivatives Using Sustainable Heterogeneous Copper Oxide Nanoparticles Supported on Activated Carbon and OER Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22918-22930. [PMID: 39410783 DOI: 10.1021/acs.langmuir.4c03054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This research work reports the synthesis of copper oxide (CuO) nanoparticles supported on activated carbon by a simple impregnation method using 2-propanol as a green solvent, followed by calcination. The synthesized CuO@C is used as an efficient heterogeneous nanocatalyst for the synthesis of 2H-indazoles and quinazolines utilizing commercially available 2-bromobenzaldehydes, primary amines, and sodium azide under ligand-free and base-free conditions. The present methodology demonstrates the formation of new N-N, C-N, and C═N bonds under one-pot reaction conditions using PEG-400 as a green solvent. The reaction pathways are supported by control experiments and mechanistic elucidation. Further, the synthesized catalyst was characterized by a range of microscopic and spectroscopic techniques such as powdered X-ray diffraction, fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray, UV-vis, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and BET-BJH analysis. Importantly, the study focused on the recyclability of the catalyst and successfully showed gram-scale production. Significantly, our active catalyst exhibited an outstanding performance in the oxygen evolution reaction, with an overpotential of 290 mV and a swallow Tafel slope of 91 mV dec-1.
Collapse
Affiliation(s)
- Thrilokraj R
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Maruboina Hemanth Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Vishwanath Ankalgi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| |
Collapse
|
3
|
Nandwana NK, Patel OPS, Mehra MK, Kumar A, Salvino JM. Recent Advances in Metal-Catalyzed Approaches for the Synthesis of Quinazoline Derivatives. Molecules 2024; 29:2353. [PMID: 38792215 PMCID: PMC11124210 DOI: 10.3390/molecules29102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Nitesh K. Nandwana
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Om P. S. Patel
- Department of Technical Education, Government Polytechnic Naraini, Banda 210001, India
| | - Manish K. Mehra
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph M. Salvino
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Qi C, Shen X, Fang W, Chang J, Wang XN. TMSOTf-Catalyzed [4 + 2] Annulation of Ynamides and β-(2-Aminophenyl)-α,β-ynones for the Synthesis 2-Aminoquinolines. Org Lett 2024; 26:3503-3508. [PMID: 38661174 DOI: 10.1021/acs.orglett.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A metal-free TMSOTf-catalyzed [4 + 2] annulation of ynamides with β-(2-aminophenyl)-α,β-ynones enables the regiospecific and facile assembly of 2-aminoquinoline frameworks. The catalyst TMSOTf presented a remarkable advancement compared to previously reported transition-metal catalysts. A wide range of 3-aryl/alkyl-substituted 2-aminoquinolines were generated in moderate to excellent yields due to the mild conditions.
Collapse
Affiliation(s)
- Chaofan Qi
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoxiao Shen
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wozheng Fang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiao-Na Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
5
|
Choudhary S, Gayyur, Mandal A, Patra A, Kant R, Ghosh N. Copper/Zinc-Catalyzed Stitching of 2-Carbonylanilines with Bis(ynamides): Access to Pyrrolo[2,3- b]quinolines and Its Photophysical Studies. J Org Chem 2024; 89:6274-6280. [PMID: 38642061 DOI: 10.1021/acs.joc.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Herein, a one-pot desulfonylative protocol enabled by copper(II)/zinc(II) salts to access pyrrolo[2,3-b]quinolines in good to excellent yields from 2-carbonylanilines and ynamide-derived buta-1,3-diynes has been reported. Significantly, various 2-carbonylanilines carrying reactive functional groups are well tolerated. Moreover, a gram-scale synthesis and synthetic application highlight the practical utility of the current protocol. Notably, the fluorescence properties of pyrrolo[2,3-b]quinolines have been recorded, and their potential use as a fluorescent probe in the imaging of live cells has been demonstrated.
Collapse
Affiliation(s)
- Shivani Choudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gayyur
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Arnab Mandal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
6
|
Mondal S, Chakraborty S, Khanra S, Chakraborty S, Pal S, Brandão P, Paul ND. A Phosphine-Free Air-Stable Mn(II)-Catalyst for Sustainable Synthesis of Quinazolin-4(3 H)-ones, Quinolines, and Quinoxalines in Water. J Org Chem 2024; 89:5250-5265. [PMID: 38554095 DOI: 10.1021/acs.joc.3c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
The synthesis, characterization, and catalytic application of a new phosphine-free, well-defined, water-soluble, and air-stable Mn(II)-catalyst [Mn(L)(H2O)2Cl](Cl) ([1]Cl) featuring a 1,10-phenanthroline based tridentate pincer ligand, 2-(1H-pyrazol-1-yl)-1,10-phenanthroline (L), in dehydrogenative functionalization of alcohols to various N-heterocycles such as quinazolin-4(3H)-ones, quinolines, and quinoxalines are reported here. A wide array of multisubstituted quinazolin-4(3H)-ones were prepared in water under air following two pathways via the dehydrogenative coupling of alcohols with 2-aminobenzamides and 2-aminobenzonitriles, respectively. 2-Aminobenzyl alcohol and ketones bearing active methylene group were used as coupling partners for synthesizing quinoline derivatives, and various quinoxaline derivatives were prepared by coupling vicinal diols and 1,2-diamines. In all cases, the reaction proceeded smoothly using our Mn(II)-catalyst [1]Cl in water under air, affording the desired N-heterocycles in satisfactory yields starting from cheap and readily accessible precursors. Gram-scale synthesis of the compounds indicates the industrial relevance of our synthetic strategy. Control experiments were performed to understand and unveil the plausible reaction mechanism.
Collapse
Affiliation(s)
- Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Shrestha Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| | - Paula Brandão
- Departamento de Química/CICECO, Instituto de Materiais de Aveiro, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Botanic Garden, Howrah, Shibpur 711103, India
| |
Collapse
|
7
|
Samanta A, Behera P, Chaubey A, Mondal A, Pal D, Mohar K, Roy L, Srimani D. Experimental and theoretical insights for designing Zn 2+ complexes to trigger chemo-selective hetero-coupling of alcohols. Chem Commun (Camb) 2024; 60:4056-4059. [PMID: 38505958 DOI: 10.1039/d4cc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Designing well-defined Zn-complexes for sustainable dehydrogenative catalysis overcoming the difficulties associated with activating Zn2+(d10)-metal species is considered paramount goal in catalysis. Herein, we explore the plausibility of β-alkylation of secondary alcohols with primary alcohols by well-defined 3d10 Zn-complexes. Detailed organometallic and catalytic investigations, in conjunction with computational analyses, were conducted to ascertain the potential involvement of the catalyst at various stages of the catalytic process.
Collapse
Affiliation(s)
- Arup Samanta
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Prativa Behera
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India.
| | - Amit Chaubey
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Kailash Mohar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India.
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
8
|
Pennamuthiriyan A, Rengan R. Nickel Pincer Complexes Catalyzed Sustainable Synthesis of 3,4-Dihydro-2 H-1,2,4-benzothiadiazine-1,1-dioxides via Acceptorless Dehydrogenative Coupling of Primary Alcohols. J Org Chem 2024; 89:2494-2504. [PMID: 38326039 DOI: 10.1021/acs.joc.3c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We report the atom-economic and sustainable synthesis of biologically important 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide (DHBD) derivatives from readily available aromatic primary alcohols and 2-aminobenzenesulfonamide catalyzed by nickel(II)-N∧N∧S pincer-type complexes. The synthesized nickel complexes have been well-studied by elemental and spectroscopic (FT-IR, NMR, and HRMS) analyses. The solid-state molecular structure of complex 2 has been authenticated by a single-crystal X-ray diffraction study. Furthermore, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide derivatives have been synthesized (24 examples) utilizing a 3 mol % Ni(II) catalyst through acceptorless dehydrogenative coupling of benzyl alcohols with benzenesulfonamide. Gratifyingly, the catalytic protocol is highly selective with the yield up to 93% and produces eco-friendly water/hydrogen gas as byproducts. The control experiments and plausible mechanistic investigations indicate that the coupling of the in situ generated aldehyde with benzenesulfonamide leads to the desired product. In addition, a large-scale synthesis of one of the thiadiazine derivatives unveils the synthetic usefulness of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
9
|
Mondal A, Phukan HJ, Pal D, Kumar S, Roy M, Srimani D. Well-Defined Mn(II)-complex Catalyzed Switchable De(hydrogenative) Csp 3 -H Functionalization of Methyl Heteroarenes: A Sustainable Approach for Diversification of Heterocyclic Motifs. Chemistry 2024; 30:e202303315. [PMID: 37933814 DOI: 10.1002/chem.202303315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Catalytic activities of Mn(I) complexes derived from expensive MnBr(CO)5 salt have been explored in various dehydrogenative transformations. However, the reactivity and selectivity of inexpensive high spin Mn(II) complexes are uncommon. Herein, we have synthesized four new Mn(II) complexes and explored switchable alkenylation and alkylation of methyl heteroarenes employing a single Mn(II)catalyst. The developed protocol selectively furnishes a series of functionalized E-heteroarenes and C-alkylated heteroarenes with good to excellent yields. Various medicinally and synthetically useful compounds are successfully synthesized using our developed protocol. Various controls and kinetics experiments were executed to shed light on the mechaism,which reveals that α-C-H bond breaking of alcohol is the slowest step.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Hirak Jyoti Phukan
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Saurabh Kumar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
10
|
Pal D, Mondal A, Sarmah R, Srimani D. Designing Cobalt(II) Complexes for Tandem Dehydrogenative Synthesis of Quinoline and Quinazoline Derivatives. Org Lett 2024. [PMID: 38194364 DOI: 10.1021/acs.orglett.3c03944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, we have constructed three new Co(II) complexes in which steric features govern their structural geometry. The metal ligand-cooperation behavior of the alkoxy arm is utilized to explore the catalytic activities of these complexes with respect to dehydrogenation. A wide range of C-3-substituted quinoline and quinazoline derivatives were synthesized in high yields. The developed protocol's usefulness is enhanced by the chemoselective transformation of different fatty alcohols to synthesize heterocycles having distal unsaturation. Various kinetic, mechanistic, and control studies were conducted to comprehend the reaction route.
Collapse
Affiliation(s)
- Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Rajashri Sarmah
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
11
|
Sundar S, Veerappan T, Pennamuthiriyan A, Rengan R. Arene Ruthenium(II)-Catalyzed Sustainable Synthesis of 2,4-Disubstituted Quinazolines via Acceptorless Dual Dehydrogenative Coupling of Alcohols. J Org Chem 2023. [PMID: 38029325 DOI: 10.1021/acs.joc.3c01808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We demonstrate an efficient and sustainable strategy for the direct synthesis of 2,4-disubstituted quinazolines by arene Ru(II)benzhydrazone complex via the eco-friendly sequential acceptorless dehydrogenative coupling of 2-aminobenzhydrol derivatives and benzyl alcohols for the first time. The new ruthenium(II) complex of the general formula [(η6-p-cymene)Ru(L1)Cl] (L1-acenaphthenequinone hydrazone) has been synthesized and characterized by analytical, spectroscopic, and single-crystal X-ray diffraction techniques. A broad spectrum of 2,4-disubstituted quinazolines have been successfully derived (25 examples) from 2-aminobenzhydrol derivatives with various benzyl alcohols using 1 mol % of catalyst loading in the presence of NH4OAc. The present protocol is highly selective and produces a maximum yield of 95% under mild reaction conditions. The different reaction intermediates detected through control experiments such as aldehyde, 2-aminobenzophenone, benzylidene(amino)phenylmethanone, and 1,2-dihydroquinazoline are isolated and authenticated by the NMR study. Gratifyingly, the coupling reaction is a simple and atom economic with the release of water and hydrogen gas as the only byproducts. A gram-scale synthesis of 2-(4-methoxyphenyl)-4-phenylquinazoline illustrates the synthetic utility of the present protocol.
Collapse
Affiliation(s)
- Saranya Sundar
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli 620002, Tamilnadu, India
| | - Tamilthendral Veerappan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
12
|
Kahar NM, Jadhav PP, Dawande SG. Rhodium(II)-catalyzed synthesis of 2-aminoquinoline derivatives from 2-quinolones and N-sulfonyl-1,2,3-triazoles. Org Biomol Chem 2023; 21:8267-8272. [PMID: 37807927 DOI: 10.1039/d3ob00971h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Herein, we disclose a rhodium(II) catalyzed efficient and convenient method for the synthesis of 2-aminoquinoline derivatives from 2-quinolones and N-sulfonyl-1,2,3-triazoles. The reaction provides rapid access to a series of 2-aminoquinolines with moderate to excellent yields. The reaction proceeds via quinolone-hydroxyquinoline tautomerization/O-H insertion to a rhodium(II)-aza vinyl carbene intermediate generated by denitrogenation of triazole followed by rearrangement to deliver the desired product. Furthermore, we demonstrated the iodine-mediated dealkylation of a 2-aminoquinoline derivative.
Collapse
Affiliation(s)
- Nilesh M Kahar
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Pankaj P Jadhav
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Sudam G Dawande
- Department of Chemistry, Indian Institute of Technology, Madras, Tamil Nadu, 600036, India.
| |
Collapse
|
13
|
Choudhary S, Gayyur, Kant R, Ghosh N. Leveraging Zn(II) Catalyst: Synthesis of Amidoquinolines via (3 + 3) Heteroannulation of Aromatic Amines and Ynamides. J Org Chem 2023. [PMID: 37466147 DOI: 10.1021/acs.joc.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, we present a Zn(II)-catalyzed (3 + 3) heteroannulation reaction between aromatic amines and 1,3-diynamides for the synthesis of amidoquinolines. A large number of aromatic amines are well tolerated, furnishing quinoline derivatives in up to excellent yield. Notably, various reactive functional groups have survived under the optimal reaction conditions, highlighting the mildness of the developed protocol. In addition, amines derived from bioactive molecules show modest reactivity.
Collapse
Affiliation(s)
- Shivani Choudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gayyur
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
P H, M V, Tomasini M, Poater A, Dey R. Transition metal-free synthesis of 2-aryl quinazolines via alcohol dehydrogenation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Tamatam R, Kim SH, Shin D. Transition-metal-catalyzed synthesis of quinazolines: A review. Front Chem 2023; 11:1140562. [PMID: 37007059 PMCID: PMC10060649 DOI: 10.3389/fchem.2023.1140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Quinazolines are a class of nitrogen-containing heterocyclic compounds with broad-spectrum of pharmacological activities. Transition-metal-catalyzed reactions have emerged as reliable and indispensable tools for the synthesis of pharmaceuticals. These reactions provide new entries into pharmaceutical ingredients of continuously increasing complexity, and catalysis with these metals has streamlined the synthesis of several marketed drugs. The last few decades have witnessed a tremendous outburst of transition-metal-catalyzed reactions for the construction of quinazoline scaffolds. In this review, the progress achieved in the synthesis of quinazolines under transition metal-catalyzed conditions are summarized and reports from 2010 to date are covered. This is presented along with the mechanistic insights of each representative methodology. The advantages, limitations, and future perspectives of synthesis of quinazolines through such reactions are also discussed.
Collapse
Affiliation(s)
- Rekha Tamatam
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, Incheon, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
- *Correspondence: Seok-Ho Kim, ; Dongyun Shin,
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, Incheon, Republic of Korea
- *Correspondence: Seok-Ho Kim, ; Dongyun Shin,
| |
Collapse
|
16
|
Kishore PS, Gujjarappa R, Putta VPRK, Polina S, Singh V, Malakar CC, Pujar PP. Potassium
tert
‐Butoxide‐Mediated Synthesis of 2‐Aminoquinolines from Alkylnitriles and 2‐Aminobenzaldehyde Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202204238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004 Manipur India
| | | | - Saibabu Polina
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 India
| | - Virender Singh
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004 Manipur India
| | | |
Collapse
|
17
|
Patra K, Bhattacherya A, Li C, Bera JK, Soo HS. Understanding the Visible-Light-Initiated Manganese-Catalyzed Synthesis of Quinolines and Naphthyridines under Ambient and Aerobic Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamaless Patra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arindom Bhattacherya
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chenfei Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Han Sen Soo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
18
|
Hao Z, Zhou X, Ma Z, Zhang C, Han Z, Lin J, Lu GL. Dehydrogenative Synthesis of Quinolines and Quinazolines via Ligand-Free Cobalt-Catalyzed Cyclization of 2-Aminoaryl Alcohols with Ketones or Nitriles. J Org Chem 2022; 87:12596-12607. [PMID: 36162131 DOI: 10.1021/acs.joc.2c00734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a convenient and efficient protocol to synthesize quinolines and quinazolines in one pot under mild conditions. A variety of substituted quinolines were synthesized in good to excellent yields (up to 97% yield) from the dehydrogenative cyclizations of 2-aminoaryl alcohols and ketones catalyzed by readily available Co(OAc)2·4H2O. This cobalt catalytic system also showed high activity in the reactions of 2-aminobenzyl alcohols with nitriles, affording various quinazoline derivatives (up to 95% yield). The present protocol offers an environmentally benign approach for the synthesis of N-heterocycles by employing an earth-abundant cobalt salt under ligand-free conditions.
Collapse
Affiliation(s)
- Zhiqiang Hao
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Xiaoyu Zhou
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Zongwen Ma
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Caicai Zhang
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Zhangang Han
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Jin Lin
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Rao K, Chai Z, Zhou P, Liu D, Sun Y, Yu F. Transition-metal-free approach to quinolines via direct oxidative cyclocondensation reaction of N,N-dimethyl enaminones with o-aminobenzyl alcohols. Front Chem 2022; 10:1008568. [PMID: 36212061 PMCID: PMC9532769 DOI: 10.3389/fchem.2022.1008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
A transition-metal-free method for the construction of 3-substituted or 3,4-disubstituted quinolines from readily available N,N-dimethyl enaminones and o-aminobenzyl alcohols is reported. The direct oxidative cyclocondensation reaction tolerates broad functional groups, allowing the efficient synthesis of various quinolines in moderate to excellent yields. The reaction involves a C (sp3)-O bond cleavage and a C=N bind and a C=C bond formation during the oxidative cyclization process, and the mechanism was proposed.
Collapse
|
20
|
Dinh HM, Gridneva T, Karimata A, Garcia-Roca A, Pruchyathamkorn J, Patil PH, Petrov A, Sarbajna A, Lapointe S, Khaskin E, Fayzullin RR, Khusnutdinova JR. Single and double deprotonation/dearomatization of the N,S-donor pyridinophane ligand in ruthenium complexes. Dalton Trans 2022; 51:14734-14746. [PMID: 36106442 DOI: 10.1039/d2dt02219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a series of ruthenium complexes with a tetradentate N,S-donor ligand, 2,11-dithia[3.3](2,6)pyridinophane (N2S2), that undergo single and double deprotonation in the presence of a base leading to the deprotonation of one or both pyridine rings. Both singly and doubly deprotonated complexes were structurally characterized by single-crystal X-ray diffraction. The NMR spectra are indicative of the dearomatization of one or both pyridine rings upon the deprotonation of the CH2-S arm, similar to the dearomatization of phosphine-containing pincer ligands. The deprotonated (N2S2)Ru complexes did not show appreciable catalytic or stoichiometric reactivity in transfer hydrogenation, hydrogenation and dehydrogenation of alcohols, and attempted activation of H2, CO2, and other substrates. Such a lack of reactivity is likely due to the low stability of the deprotonated species as evident from the structural characterization of one of the decomposition products in which shrinkage of the macrocyclic ring occurs via picolyl arm migration.
Collapse
Affiliation(s)
- Hoan Minh Dinh
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Ayumu Karimata
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Alèria Garcia-Roca
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Jiratheep Pruchyathamkorn
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Pradnya H Patil
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Andrey Petrov
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Abir Sarbajna
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Sébastien Lapointe
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Eugene Khaskin
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
21
|
Liu X, Sotiropoulos J, Taillefer M. A New Route to
E
‐Stilbenes through the Transition‐Metal‐Free KO
t
Bu/DMF‐Promoted Direct Coupling of Alcohols with Phenyl Acetonitriles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoping Liu
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| | | | - Marc Taillefer
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| |
Collapse
|
22
|
Sundarraman B, Rengan R, Semeril D. NNO Pincer Ligand-Supported Palladium(II) Complexes: Direct Synthesis of Quinazolines via Acceptorless Double Dehydrogenative Coupling of Alcohols. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Balaji Sundarraman
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, 620 024 Tiruchirappalli, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, 620 024 Tiruchirappalli, India
| | - David Semeril
- Laboratoire de Chimie Inorganique et Catalyse, Institut de Chimie, Universite de Strasbourg, UMR 7177, CNRS, 67000 Strasbourg, France
| |
Collapse
|
23
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
24
|
Savarimuthu Selvan C, Rengan R, Małecki JG. Concise Access to Perimidines by Palladium (II) Complexes via Acceptorless Dehydrogenative Coupling of Alcohols. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli India
| | - Jan Grzegorz Małecki
- Department of Crystallography Institute of Chemistry, University of Silesia Katowice Poland
| |
Collapse
|
25
|
Das S, Mondal R, Guin AK, Paul ND. Ligand centered redox enabled sustainable synthesis of triazines and pyrimidines using a zinc-stabilized azo-anion radical catalyst. Org Biomol Chem 2022; 20:3105-3117. [PMID: 35088804 DOI: 10.1039/d1ob02428k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report ligand-centered redox controlled Zn(II)-catalyzed multicomponent approaches for synthesizing pyrimidines and triazines. Taking advantage of the ligand-centered redox events and using a well-defined Zn(II)-catalyst (1a) bearing (E)-2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) as the redox-active ligand, a wide variety of substituted pyrimidines and triazines were prepared via dehydrogenative alcohol functionalization reactions. Pyrimidines were prepared via two pathways: (i) dehydrogenative coupling of primary and secondary alcohols with amidines and (ii) dehydrogenative coupling of primary alcohols with alkynes and amidines. Triazines were prepared via dehydrogenative coupling of alcohols and amidines. Catalyst 1a is well tolerant to a wide range of substrates yielding the desired pyrimidines and triazines in moderate to good isolated yields. A series of control reactions were performed to predict the plausible mechanism, suggesting that the active participation of the ligand-centered redox events enables the Zn(II)-complex 1a to act as an efficient catalyst for synthesizing these N-heterocycles. Electron transfer processes occur at the azo-aromatic ligand throughout the catalytic reaction, and the Zn(II)-center serves only as a template.
Collapse
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| |
Collapse
|
26
|
Mondal A, Sharma R, Dutta B, Pal D, Srimani D. Well-Defined NNS-Mn Complex Catalyzed Selective Synthesis of C-3 Alkylated Indoles and Bisindolylmethanes Using Alcohols. J Org Chem 2022; 87:3989-4000. [PMID: 35258302 DOI: 10.1021/acs.joc.1c02702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we demonstrated Mn-catalyzed selective C-3 functionalization of indoles with alcohols. The developed catalyst can also furnish bis(indolyl)methanes from the same set of substrates under slightly modified reaction conditions. Mechanistic studies reveal that the C-3 functionalization of indoles is going via a borrowing hydrogen pathway. To highlight the practical utility, a diverse range of substrates including nine structurally important drug molecules are synthesized. Furthermore, we also introduced a one-pot cascade strategy for synthesizing C-3 functionalized indoles directly from 2-aminophenyl ethanol and alcohol.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Rahul Sharma
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Bishal Dutta
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
27
|
Zubar V, Brzozowska A, Sklyaruk J, Rueping M. Dehydrogenative and Redox-Neutral N-Heterocyclization of Aminoalcohols Catalyzed by Manganese Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viktoriia Zubar
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aleksandra Brzozowska
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Singh VK, Donthireddy SNR, Pandey VK, Rit A. Ru II-Complexes of heteroditopic chelating NHC ligands: effective catalysts for the β-alkylation of secondary alcohols and the synthesis of 2-alkylaminoquinoline derivatives following the dehydrogenative protocol. Org Biomol Chem 2022; 20:1945-1951. [PMID: 35170618 DOI: 10.1039/d2ob00034b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RuII-Complexes of chelating heteroditopic N-heterocyclic carbene ligands featuring imidazol-2-ylidene (ImNHC) and 1,2,3-triazol-5-ylidene (tzNHC) donors connected via a CH2 spacer, 1a-c, were found to be very effective catalysts for the cross-coupling of secondary and primary alcohols with the elimination of H2O. Diverse β-alkylated secondary alcohols were thus obtained by following this method in excellent yields of up to 95% by employing a very low catalyst (1a) loading of 0.01-0.001 mol% along with the inexpensive base KOH. Mechanistically, the present protocol follows the borrowing hydrogen strategy which was established by various control experiments including deuterium labelling experiments and importantly, 1H NMR and ESI-MS analyses validated the participation of a Ru-H species in the catalytic cycle. Remarkably, the present system displayed the highest Ru-based TON of 396 000 for the β-benzylation of 1-phenylethanol with a catalyst loading of 1 ppm (0.0001 mol%). Additionally, diverse 2-alkylaminoquinoline derivatives were synthesized in a one-pot manner from 2-aminobenzyl alcohol, 2-arylacetonitrile, and various primary alcohols.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Vipin K Pandey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
29
|
Shui H, Zhong Y, Luo N, Luo R, Ouyang L. Iridium-Catalyzed Acceptorless Dehydrogenative Coupling of 2-Aminoarylmethanols with Amides or Nitriles to Synthesize Quinazolines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1755-4700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractAn efficient iridium-catalyzed acceptorless dehydrogenative coupling (ADC) reaction for the preparation of various quinazolines from 2-aminoarylmethanols and amides or nitriles had been developed. A wide range of substituted 2-aminobenzyl alcohols and (hetero)aryl or alkyl benzamides and nitriles were well compatible to afford various quinazolines in excellent yields. Merits of this new strategy are the high atom-economy, mild reaction conditions, and simple operation, and the methodology is suitable for a variety of substrates.
Collapse
|
30
|
Pal D, Mondal A, Srimani D. Well-defined manganese complex catalyzed dehydrogenative synthesis of quinazolin-4(3 H)-ones and 3,4-dihydro-2 H-1,2,4-benzothiadiazine 1,1-dioxides. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00260d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of N-heterocycles has been considered an emerging topic of chemical research due to its widespread usage in medicinal chemistry, materials science, and natural product synthesis.
Collapse
Affiliation(s)
- Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
31
|
Verma S, Kujur S, Sharma R, Pathak DD. Cucurbit[6]uril supported β-Ni(OH) 2 nanoparticles as a heterogeneous catalyst for the synthesis of quinazolines via acceptorless dehydrogenative coupling of alcohols with nitriles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03484k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthesis of a series of quinazolines using β-Ni(OH)2-CB[6] as a heterogeneous nanocatalyst.
Collapse
Affiliation(s)
- Shruti Verma
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Shelly Kujur
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Richa Sharma
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Devendra D. Pathak
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| |
Collapse
|
32
|
Torres-Calis A, García JJ. Manganese-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes with iPrOH as hydrogen source. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00246a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Mn-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes is reported herein, along with Mn-catalyzed hydration of α-keto alkynes. Mechanistic studies displayed an asymmetrical Mn-hydride species performing the catalytic turnover.
Collapse
Affiliation(s)
- Antonio Torres-Calis
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Juventino J. García
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
33
|
Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Sustainable synthesis of pyrazoles using alcohols as the primary feedstock by an iron catalyzed tandem C–C and C–N coupling approach. Org Chem Front 2022. [DOI: 10.1039/d2qo01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two new efficient iron-catalyzed synthetic strategies for multicomponent synthesis of tri-substituted pyrazoles using biomass-derived alcohols as the primary feedstock.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
34
|
Jo HY, Lee JM, Pietrasiak E, Lee E, Rhee YH, Park J. Generation of N-H Imines from α-Azidocarboxylic Acids through Ru-Catalyzed Decarboxylation. J Org Chem 2021; 86:17409-17417. [PMID: 34752090 DOI: 10.1021/acs.joc.1c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new method for the synthesis of N-H imines from α-azidocarboxylic acids was developed, which proceeds through decarboxylative C-C bond cleavage catalyzed by a commercial diruthenium complex ([CpRu(CO)2]2) under visible light irradiation at room temperature within several minutes. The reactive products undergo condensation, which forms cyclic trimers (2,4,6-trialkylhexahydro-1,3,5-triazines) or linear N,N'-bis(arylmethylidene)arylmethanediamines in quantitative yields. Alternatively, the N-H imines can be trapped with benzylamine and 2-(aminomethyl)aniline, providing stable N-benylimines and tetrahydroquinazolines, respectively. Subsequent oxidation of tetrahydroquinazolines produced quinazolines.
Collapse
Affiliation(s)
- Hwi Yul Jo
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Jeong Min Lee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Ewa Pietrasiak
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Jaiwook Park
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| |
Collapse
|
35
|
Hofmann N, Hultzsch KC. Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of N‐Heterocycles: A Comparison between Base and Noble Metal Catalysis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Hofmann
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| | - Kai C. Hultzsch
- University of Vienna, Faculty of Chemistry, Institute of Chemical Catalysis Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
36
|
Luo L, Liu H, Zeng W, Hu W, Wang D. BTP‐Rh@g‐C
3
N
4
as an efficient recyclable catalyst for dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lan Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hongqiang Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
- China Synchem Technology Co., Ltd. Bengbu China
| | - Wei Zeng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Wenkang Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| |
Collapse
|
37
|
Mondal R, Chakraborty G, Guin AK, Pal S, Paul ND. Iron catalyzed metal-ligand cooperative approaches towards sustainable synthesis of quinolines and quinazolin-4(3H)-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
|
39
|
Mondal A, Sharma R, Pal D, Srimani D. Manganese catalyzed switchable C-alkylation/alkenylation of fluorenes and indene with alcohols. Chem Commun (Camb) 2021; 57:10363-10366. [PMID: 34541595 DOI: 10.1039/d1cc03529k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The usage of earth-abundant, nontoxic transition metals in place of rare noble metals is a central goal in catalysis. This would be especially interesting when the reactivity and selectivity patterns can be tuned. Herein, we introduced the first Mn-catalyzed selective C-alkylation and olefination of fluorene, and indene with alcohols. Various substrates including benzylic, heteroaromatic, and aliphatic primary and secondary alcohols are employed as alkylating agents. Mechanistic investigations and a kinetic study underpin the involvement of the olefinated intermediate to furnish the alkylated product.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Rahul Sharma
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
40
|
Mondal R, Chakraborty G, Guin AK, Sarkar S, Paul ND. Iron-Catalyzed Alkyne-Based Multicomponent Synthesis of Pyrimidines under Air. J Org Chem 2021; 86:13186-13197. [PMID: 34528802 DOI: 10.1021/acs.joc.1c00867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An iron-catalyzed sustainable, economically affordable, and eco-friendly synthetic protocol for the construction of various trisubstituted pyrimidines is described. A wide range of trisubstituted pyrimidines were prepared using a well-defined, easy to prepare, bench-stable, and phosphine-free iron catalyst featuring a redox-noninnocent tridentate arylazo pincer under comparatively mild aerobic conditions via dehydrogenative functionalization of alcohols with alkynes and amidines.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Susmita Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
41
|
Luo X, Zhao Y, Tao S, Yang ZT, Luo H, Yang W. A simple and efficient copper-catalyzed three-component reaction to synthesize ( Z)-1,2-dihydro-2-iminoquinolines. RSC Adv 2021; 11:31152-31158. [PMID: 35496874 PMCID: PMC9041411 DOI: 10.1039/d1ra06330h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
A operationally simple synthesis of (Z)-1,2-dihydro-2-iminoquinolines that proceeds under mild conditions is achieved by copper-catalyzed reaction of 1-(2-aminophenyl)ethan-1-ones, sulfonyl azides and terminal ynones. In particular, the reaction goes through a base-free CuAAC/ring-opening process to obtain the Z-configured products due to hydrogen bonding.
Collapse
Affiliation(s)
- Xiai Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Department of Pharmacy, Hunan University of Medicine Huaihua 418000 China
| | - Yu Zhao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Susu Tao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China
| | - Zhong-Tao Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| | - Weiguang Yang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University Zhanjiang 524023 China .,The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong 524023 China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Zhanjiang Guangdong 524023 China
| |
Collapse
|
42
|
Das K, Barman MK, Maji B. Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chem Commun (Camb) 2021; 57:8534-8549. [PMID: 34369488 DOI: 10.1039/d1cc02512k] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Catalytic hydrogen transfer reactions have enormous academic and industrial applications for the production of diverse molecular scaffolds. Over the past few decades, precious late transition-metal catalysts were employed for these reactions. The early transition metals have recently gained much attention due to their lower cost, less toxicity, and overall sustainability. In this regard, manganese, which is the third most abundant transition metal in the Earth's crust, has emerged as a viable alternative. However, the key to the success of such manganese-based complexes lies in the multifunctional ligand design and choice of appropriate ancillary ligands, which helps them mimic and, even in some cases, supersede noble metals' activities. The metal-ligand bifunctionality, achieved via deprotonation of the acidic C-H or N-H bonds, is one of the powerful strategies employed for this purpose. Alongside, the ligand hemilability in which a weakly chelating group tunes in between the coordinated and uncoordinated stages could effectively stabilize the reactive intermediates, thereby facilitating substrate activation and catalysis. Redox non-innocent ligands acting as an electron sink, thereby helping the metal center in steps gaining or losing electrons, and non-classical metal-ligand cooperativity has also played a significant role in the ligand design for manganese catalysis. The strategies were not only employed for the chemoselective hydrogenation of different reducible functionalities but also for the C-X (X = C/N) coupling reactions via HT and downstream cascade processes. This article features multifunctional ligand-based manganese complexes, highlighting the importance of ligand design and choice of ancillary ligands for achieving the desired catalytic activity and selectivity for HT reactions. We have also discussed the detailed reaction pathways for metal complexes involving bifunctionality, hemilability, redox activity, and indirect metal-ligand cooperativity. The synthetic utilization of those complexes in different organic transformations has also been detailed.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
43
|
Mondal A, Sharma R, Pal D, Srimani D. Recent Progress in the Synthesis of Heterocycles through Base Metal‐Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Avijit Mondal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Rahul Sharma
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Debjyoti Pal
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology Guwahati, Assam Kamrup (Rural) 781039 India
| |
Collapse
|
44
|
Biswas N, Srimani D. Synthesis of 1,8-Dioxo-decahydroacridine Derivatives via Ru-Catalyzed Acceptorless Dehydrogenative Multicomponent Reaction. J Org Chem 2021; 86:9733-9743. [PMID: 34170141 DOI: 10.1021/acs.joc.1c01075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ru-catalyzed acceptorless dehydrogenative multicomponent reaction has been developed. This reaction offers a cost-effective and simple operational strategy to synthesize biologically active 1,8-dioxodecahydroacridine derivatives. The protocol provides a wide range of substrate scope and various functional groups are also well tolerated under the reaction condition. To shed light on the mechanistic and kinetic study, some controlled experiments and deuterium labeling experiments were executed. A time-dependent product distribution experiment is also presented and the reaction scale-up is performed to highlight the practical utility of this strategy.
Collapse
Affiliation(s)
- Nandita Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
45
|
Nad P, Mukherjee A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinaki Nad
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| | - Arup Mukherjee
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| |
Collapse
|
46
|
Das S, Mondal R, Chakraborty G, Guin AK, Das A, Paul ND. Zinc Stabilized Azo-anion Radical in Dehydrogenative Synthesis of N-Heterocycles. An Exclusively Ligand Centered Redox Controlled Approach. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
47
|
Das K, Sarkar K, Maji B. Manganese-Catalyzed Anti-Markovnikov Hydroamination of Allyl Alcohols via Hydrogen-Borrowing Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
48
|
Dahatonde DJ, Ghosh A, Batra S. Metal‐Free Synthesis of Alkenylazaarenes and 2‐Aminoquinolines through Base‐Mediated Aerobic Oxidative Dehydrogenation of Benzyl Alcohols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dipak J. Dahatonde
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute BS-10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
| | - Aritra Ghosh
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute BS-10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research CSIR – Human Resource Development Centre, (CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad 201002, Uttar Pradesh India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute BS-10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research CSIR – Human Resource Development Centre, (CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad 201002, Uttar Pradesh India
| |
Collapse
|
49
|
|
50
|
Yuan F, Xie S, Zhuo L, Wang L, Zhu H. Metal‐Free Synthesis of 2‐Aryl Quinazolines via Tandem C−H/N−H Bond Functionalization. ChemistrySelect 2021. [DOI: 10.1002/slct.202100990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Feixiang Yuan
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Shihua Xie
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Liang Zhuo
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Lei Wang
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Hongjun Zhu
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|