1
|
Mitra S, Connolly SM, Ayidi S, Mondal M, Panda M, Kelly BG, Kerrigan NJ. Catalytic stereoselective synthesis of cyclopentanones from donor-acceptor cyclopropanes and in situ-generated ketenes. Org Biomol Chem 2024; 22:7128-7132. [PMID: 39157999 DOI: 10.1039/d4ob01313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
A dual InBr3-EtAlCl2 Lewis acidic system was found to be optimal for promoting the diastereoselective (3 + 2)-cycloaddition of donor-acceptor cyclopropanes with in situ-generated ketenes to form cyclopentanones. The desired products were formed in good to excellent yields (70-93% for 16 examples) and with good to excellent diastereoselectivity and enantiospecificity.
Collapse
Affiliation(s)
- Shubhanjan Mitra
- School of Chemical Sciences and Life Sciences Institute, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Sophie M Connolly
- School of Chemical Sciences and Life Sciences Institute, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Saud Ayidi
- School of Chemical Sciences and Life Sciences Institute, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Mukulesh Mondal
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd, MI 48309, USA
| | - Manashi Panda
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd, MI 48309, USA
| | | | - Nessan J Kerrigan
- School of Chemical Sciences and Life Sciences Institute, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
2
|
Xie F, Dong S, Sun Y, Liu W, Liu X, Liu L, Zhao Q, Wang J. Synthesis of Chiral β,β-Disubstituted Ketones via CuH-Catalyzed Coupling of Aryl Alkenes and 3-Aryl-2 H-azirines. Org Lett 2022; 24:8213-8217. [DOI: 10.1021/acs.orglett.2c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Shijie Dong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yajun Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Wenxing Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiaodan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Lu Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Jiangli Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
3
|
Ahmad T, Khan S, Ullah N. Recent Advances in the Catalytic Asymmetric Friedel-Crafts Reactions of Indoles. ACS OMEGA 2022; 7:35446-35485. [PMID: 36249392 PMCID: PMC9558610 DOI: 10.1021/acsomega.2c05022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Functionalized chiral indole derivatives are privileged and versatile organic frameworks encountered in numerous pharmaceutically active agents and biologically active natural products. The catalytic asymmetric Friedel-Crafts reaction of indoles, catalyzed by chiral metal complexes or chiral organocatalysts, is one of the most powerful and atom-economical approaches to access optically active indole derivatives. Consequently, a wide range of electrophilic partners including α,β-unsaturated ketones, esters, amides, imines, β,γ-unsaturated α-keto- and α-ketiminoesters, ketimines, nitroalkenes, and many others have been successfully employed to achieve a plethora of functionalized chiral indole moieties. In particular, strategies for C-H functionalization in the phenyl of indoles require incorporation of a directing or blocking group in the phenyl or azole ring of indole. The discovery of chiral catalysts which can control enantiodiscrimination has gained a great deal of attention in recent years. This review will provide an updated account on the application of the asymmetric Friedel-Crafts reaction of indoles in the synthesis of diverse chiral indole derivatives, covering the timeframe from 2011 to today.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
- The
Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Gondo N, Hyakutake R, Fujimura K, Ueda Y, Nakano K, Tsutsumi R, Yamanaka M, Kawabata T. Catalyst‐Dependent Rate‐Determining Steps in Regiodivergent Vinylogous Aza‐Morita‐Baylis‐Hillman Reactions with
N
‐Ts Imines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Naruhiro Gondo
- Institute for Chemical Research Kyoto University Gokasho, Uji, Kyoto 611-0011 Japan
| | - Ryuichi Hyakutake
- Institute for Chemical Research Kyoto University Gokasho, Uji, Kyoto 611-0011 Japan
| | - Koki Fujimura
- Institute for Chemical Research Kyoto University Gokasho, Uji, Kyoto 611-0011 Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research Kyoto University Gokasho, Uji, Kyoto 611-0011 Japan
| | - Katsuhiko Nakano
- Department of Chemistry and Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-ikebukuro Toshima-ku, Tokyo 171-8588 Japan
| | - Ryosuke Tsutsumi
- Department of Chemistry and Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-ikebukuro Toshima-ku, Tokyo 171-8588 Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules Rikkyo University 3-34-1 Nishi-ikebukuro Toshima-ku, Tokyo 171-8588 Japan
| | - Takeo Kawabata
- Institute for Chemical Research Kyoto University Gokasho, Uji, Kyoto 611-0011 Japan
- Department of Pharmaceutical Sciences International University of Health and Welfare 137-1 Enokizu Okawa, Fukuoka 831-8501 Japan
| |
Collapse
|
5
|
Recent Advances in Selected Asymmetric Reactions Promoted by Chiral Catalysts: Cyclopropanations, Friedel–Crafts, Mannich, Michael and Other Zinc-Mediated Processes—An Update. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The main purpose of this review article is to present selected asymmetric synthesis reactions in which chemical and stereochemical outcomes are dependent on the use of an appropriate chiral catalyst. Optically pure or enantiomerically enriched products of such transformations may find further applications in various fields. Among an extremely wide variety of asymmetric reactions catalyzed by chiral systems, we are interested in: asymmetric cyclopropanation, Friedel–Crafts reaction, Mannich and Michael reaction, and other stereoselective processes conducted in the presence of zinc ions. This paper describes the achievements of the above-mentioned asymmetric transformations in the last three years. The choice of reactions is related to the research that has been carried out in our laboratory for many years.
Collapse
|
6
|
Jagadeesh C, Mondal B, Pramanik S, Das D, Saha J. Unprecedented Reactivity of γ‐Amino Cyclopentenone Enables Diversity‐Oriented Access to Functionalized Indoles and Indole‐Annulated Ring Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenna Jagadeesh
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus Raebareli Road, Lucknow 226014 Uttar Pradesh India
| | - Biplab Mondal
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus Raebareli Road, Lucknow 226014 Uttar Pradesh India
| | - Sourav Pramanik
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus Raebareli Road, Lucknow 226014 Uttar Pradesh India
| | - Dinabandhu Das
- School of Physical Sciences Jawaharlal Nehru University New Delhi India
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery Centre of Biomedical Research (CBMR) SGPGIMS Campus Raebareli Road, Lucknow 226014 Uttar Pradesh India
| |
Collapse
|
7
|
Jagadeesh C, Mondal B, Pramanik S, Das D, Saha J. Unprecedented Reactivity of γ-Amino Cyclopentenone Enables Diversity-Oriented Access to Functionalized Indoles and Indole-Annulated Ring Structures. Angew Chem Int Ed Engl 2021; 60:8808-8812. [PMID: 33527571 DOI: 10.1002/anie.202016015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Observation of an unexpected, Lewis acid promoted displacement of latent reactive γ-amino group on cyclopentenone presented unparalleled opportunity for enone functionalization and annulations with indole derivatives, which is developed in the current study. Herein, a vast range of C3/N-indolyl enones and indole alkaloid-like compound were accessed in excellent yields (up to 99 %) and selectivity through a one-pot operation. The mechanism most likely involves an unprecedented trait of Piancatelli-type rearrangement where influence of the gem-diaryl group appeared crucial.
Collapse
Affiliation(s)
- Chenna Jagadeesh
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Biplab Mondal
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Sourav Pramanik
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Dinabandhu Das
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| |
Collapse
|
8
|
Tang N, Xu Y, Niu T, Yang S, Dong H, Wu X, Zhu C. A radical [3 + 2]-cycloaddition reaction for the synthesis of difluorocyclopentanones. Org Chem Front 2021. [DOI: 10.1039/d1qo00201e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein is a novel radical-mediated [3 + 2]-cycloaddition reaction of alkenes to afford difluorocyclopentanones.
Collapse
Affiliation(s)
- Nana Tang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Yan Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Tao Niu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hongchun Dong
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
9
|
Chen Y, Ye X, He F, Yang X. Asymmetric synthesis of oxazolines bearing α-stereocenters through radical addition–enantioselective protonation enabled by cooperative catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00970b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient radical conjugate addition/enantioselective protonation process was developed for the asymmetric synthesis of chiral oxazolines bearing an α-stereocenter through cooperative photoredox catalysis and asymmetric organocatalysis.
Collapse
Affiliation(s)
- Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueqian Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Faqian He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Ye X, Pan Y, Chen Y, Yang X. Enantioselective Construction of Sulfur‐Containing Tetrasubstituted Stereocenters via Asymmetric Functionalizations of α‐Sulfanyl Cyclic Ketones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xueqian Ye
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongkai Pan
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Yunrong Chen
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| | - Xiaoyu Yang
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
11
|
Wang CJ, Yang QQ, Wang MX, Shang YH, Tong XY, Deng YH, Shao Z. Catalytic asymmetric 1,4-type Friedel–Crafts (hetero)arylations of 1-azadienes: the highly enantioselective syntheses of chiral hetero-triarylmethanes. Org Chem Front 2020. [DOI: 10.1039/c9qo01391a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Strategies for achieving the direct catalytic asymmetric syntheses of benzofuran-containing hetero-triarylmethanes using a 1,4-type Friedel–Crafts (hetero)arylation reaction were developed.
Collapse
Affiliation(s)
- Cheng-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Qi-Qiong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Mei-Xin Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Yun-Han Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Xin-Yu Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
12
|
Mondal M, Panda M, Davis NW, McKee V, Kerrigan NJ. Asymmetric synthesis of cyclopentanones through dual Lewis acid-catalysed [3+2]-cycloaddition of donor–acceptor cyclopropanes with ketenes. Chem Commun (Camb) 2019; 55:13558-13561. [DOI: 10.1039/c9cc07477e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual Lewis acid system promotes the formal [3+2]-cycloaddition of enantioenriched donor–acceptor cyclopropanes with ketenes to afford cyclopentanones.
Collapse
Affiliation(s)
| | | | | | - Vickie McKee
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
- Department of Physics
| | | |
Collapse
|