1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Popov AG, Viviani VR, Skumial P, Jefferson TL, Salman SG, Baxter HH, Hull KL. Copper-Catalyzed Three-Component 1,5-Carboamination of Vinylcyclopropanes. Org Lett 2024. [PMID: 38810616 DOI: 10.1021/acs.orglett.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The 1,5-copper-catalyzed carboamination of vinylcyclopropanes is presented. A carbon-centered radical, formed upon reduction of an alkyl halide by Cu(I), adds across the alkene of a vinylcyclopropane, triggering ring opening to generate a benzylic radical, which, finally, undergoes copper-mediated amination to afford a homoallylic amine. The reaction occurs with outstanding regio- and good to very good diastereoselectivities. The scope of the reaction is demonstrated with respect to all three components: alkyl halide, vinylcyclopropane, and amine nucleophile. A total of 38 examples are presented with an average yield of 60%.
Collapse
Affiliation(s)
- Andrei G Popov
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Vincent R Viviani
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Piotr Skumial
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Theodore L Jefferson
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Samer G Salman
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Henry H Baxter
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Yang L, Pi C, Wu Y, Cui X. Lewis Acid-Catalyzed [3 + 2]-Cyclization of Iodonium Ylides with Azadienes: Access to Spiro[benzofuran-2,2'-furan]-3-ones. Org Lett 2022; 24:7502-7506. [PMID: 36218222 DOI: 10.1021/acs.orglett.2c02660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective synthesis of spiro[benzofuran-2,2'-furan]-3-ones has been explored via Lewis acid-catalyzed [3 + 2] cyclization of iodonium ylides with azadienes. The acidity of the Lewis acid was significantly strengthened with strong hydrogen bond donors, thereby promoting the enolization isomerization of iodonium ylides for the subsequent cycloaddition. This reaction was compatible with a broad range of substrates under the mild reaction conditions, and efficiently delivered spiro-heterocycles with excellent stereoselectivity.
Collapse
Affiliation(s)
- Liu Yang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
4
|
Mi X, Pi C, Feng W, Cui X. Recent progress in the application of iodonium ylides in organic synthesis. Org Chem Front 2022. [DOI: 10.1039/d2qo01332k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review summarizes the recent advances in the synthetic application of iodonium ylides covering 2017 to 2022.
Collapse
Affiliation(s)
- Xia Mi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Chao Pi
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Xiuling Cui
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
5
|
Yang XL, Guo JD, Xiao H, Feng K, Chen B, Tung CH, Wu LZ. Photoredox Catalysis of Aromatic β-Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angew Chem Int Ed Engl 2020; 59:5365-5370. [PMID: 31957949 DOI: 10.1002/anie.201916423] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 12/20/2022]
Abstract
Radical formation is the initial step for conventional radical chemistry. Reported herein is a unified strategy to generate radicals in situ from aromatic β-ketoesters by using a photocatalyst. Under visible-light irradiation, a small amount of photocatalyst fac-Ir(ppy)3 generates a transient α-carbonyl radical and persistent ketyl radical in situ. In contrast to the well-established approaches, neither stoichiometric external oxidant nor reductant is required for this reaction. The synthetic utility is demonstrated by pinacol coupling of ketyl radicals and benzannulation of α-carbonyl radicals with alkynes to give a series of highly substituted 1-naphthols in good to excellent yields. The readily available photocatalyst, mild reaction conditions, broad substrate scope, and high functional-group tolerance make this reaction a useful synthetic tool.
Collapse
Affiliation(s)
- Xiu-Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Xiao
- Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Yang X, Guo J, Xiao H, Feng K, Chen B, Tung C, Wu L. Photoredox Catalysis of Aromatic β‐Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiu‐Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Xiao
- Key Laboratory of Bio-Inspired Materials and Interface SciencesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Abstract
Vicinal alkene carboamination is a highly efficient and practical synthetic strategy for the straightforward preparation of diverse and valuable amine derivatives starting from simple compounds. During the last decade that approach has found continuous research interests and various practical methods have been developed using transition-metal catalysis. Driven by the renaissance of synthetic radical chemistry, intermolecular radical alkene carboamination comprising a C-C bond and a C-N bond forming step has been intensively investigated recently culminating in novel strategies and improved protocols which complement existing methodologies. Radical alkene carboamination can be achieved via three different reaction modes. Such cascades can proceed through N-radical addition to an alkene with subsequent C-C bond formation leading to 2,1-carboamination products. Alternatively, the C-C bond can be installed prior to the C-N bond via initial C-radical addition to the alkene with subsequent β-amination resulting in 1,2-carboamination. The third mode comprises initial single electron oxidation of the alkene to the corresponding alkene radical cation that gets trapped by an N-nucleophile and the cascade is terminated by radical C-C bond formation. In this review, the three different conceptual approaches will be discussed and examples from the recent literature will be presented. Further, the reader will get insights into the mechanism of the different transformations.
Collapse
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany.
| | | |
Collapse
|
8
|
Liang H, He X, Zhang Y, Chen B, Ouyang JS, Li Y, Pan B, Subba Reddy CV, Chan WTK, Qiu L. Copper-catalyzed (4+1) and (3+2) cyclizations of iodonium ylides with alkynes. Chem Commun (Camb) 2020; 56:11429-11432. [DOI: 10.1039/d0cc04373g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The copper(ii)-catalyzed (4+1) cyclizations and copper(i)-catalyzed (3+2) cycloadditions of iodonium ylides and alkynes have been successfully developed. The corresponding highly functionalized heterocyclic products were prepared conveniently.
Collapse
|
9
|
Zhao Z, Kong X, Wang W, Hao J, Wang Y. Direct Use of Unprotected Aliphatic Amines to Generate N-Heterocycles via β-C–H Malonylation with Iodonium Ylide. Org Lett 2019; 22:230-233. [DOI: 10.1021/acs.orglett.9b04213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhiguo Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| | - Xiangjin Kong
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| | - Jingcheng Hao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
10
|
Zhang L, Zhao Z, Wang W, Liu S, Wang Y. Iodonium Ylides Enable the Direct Installation of Hydroxylamines and Oximes into a Broad Range of Alkenes. Org Lett 2019; 21:9171-9174. [PMID: 31651178 DOI: 10.1021/acs.orglett.9b03534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Described herein is an unprecedented method that enables the installation of hydroxylamines and oximes into a broad range of alkenes with iodonium ylides. For the first time, the single electron transfer process between iodonium ylides and oxygen-based Lewis bases was demonstrated in this transformation.
Collapse
Affiliation(s)
- Liang Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry , Shandong University , Jinan 250100 , China.,Shandong Analysis and Test Center , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , China
| | - Zhiguo Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry , Shandong University , Jinan 250100 , China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry , Shandong University , Jinan 250100 , China
| | - Shuya Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry , Shandong University , Jinan 250100 , China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry , Shandong University , Jinan 250100 , China
| |
Collapse
|