1
|
Niu Y, Zhang H, Li Z, Xie X, Liu Y. Copper-Catalyzed Regioselective Arylation or Alkenylation of Quinoline N-Oxides with Organoboronates. Org Lett 2024; 26:6921-6926. [PMID: 39088260 DOI: 10.1021/acs.orglett.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A copper-catalyzed arylation or alkenylation of quinoline N-oxides with aryl- or alkenylboronates, respectively, has been developed, which provides an efficient route for C2-substituted oxygenated quinolines under mild reaction conditions. The reaction shows a broad substrate scope for both quinoline N-oxides and aryl/alkenylboronates, mild reaction conditions, and high reaction efficiency. The formation of an aryl- or alkenyl-copper species as the key intermediate was suggested to be involved in this reaction.
Collapse
Affiliation(s)
- Yaru Niu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - He Zhang
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhongxian Li
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
| | - Xin Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Yuanhong Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
- High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Xie LY, Liu C, Wang SY, Tian ZY, Peng S. Ts 2O mediated deoxygenative C2-dithiocarbamation of quinoline N-oxides with CS 2 and amines. RSC Adv 2024; 14:14465-14469. [PMID: 38699687 PMCID: PMC11063682 DOI: 10.1039/d4ra02003k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024] Open
Abstract
A general, efficient and practical protocol for Ts2O promoted deoxygenative dithiocarbamation of quinoline N-oxides with in situ generated dithiocarbamic acids from CS2 and amines is reported. The reaction proceeded well under transition-metal free conditions to obtain a variety of novel quinoline-dithiocarbamate compounds with wide functional group tolerance and good to high yields.
Collapse
Affiliation(s)
- Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Chu Liu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Si-Yu Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Zhong-Ying Tian
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering Yongzhou 425100 China
| |
Collapse
|
3
|
Zhao MY, Tang JJ, Lin YJ, Tian ZY, Peng S, Xie LY. Ts 2O Promoted Deoxygenative C-H Dithiocarbonation of Quinoline N-Oxides with Potassium O-Alkyl Xanthates. J Org Chem 2024; 89:5560-5572. [PMID: 38564232 DOI: 10.1021/acs.joc.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A simple, efficient, and practical method for the synthesis of S-quinolyl xanthates was developed via Ts2O-promoted deoxygenative C-H dithiocarbonation of quinoline N-oxides with various potassium O-alkyl xanthates. The reaction performed well under transition-metal-free, base-free, and room-temperature conditions with wide substrate tolerance. Employing potassium O-tert-butyl xanthate (tBuOCS2K) as a nucleophile, some valuable quinoline-2-thiones were unexpectedly obtained in a one-pot reaction without any additional base.
Collapse
Affiliation(s)
- Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Zhong-Ying Tian
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, Hunan, China
| |
Collapse
|
4
|
Wang K, Gong C, Xiao W, Abdukader A, Wang D. Accessing 1,8-Naphthyridone-3-carboxylic Acid Derivatives and Application to the Synthesis of Amfonelic Acid. J Org Chem 2024; 89:5811-5824. [PMID: 38602006 DOI: 10.1021/acs.joc.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
1,8-Naphthyridone-3-carboxyl is the core structure of several on-market antibacterial drugs. It has prompted significant interest from the synthetic community. Here, we report a practical synthesis of diversely functionalized 1,8-naphthyridone-3-carboxylic acid derivatives starting from readily available and inexpensive nicotinic acid derivatives. All key steps have been optimized. Furthermore, the usefulness of this protocol has been exemplified by the first synthesis of amfonelic acid.
Collapse
Affiliation(s)
- Kaijuan Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang,China
| | - Chengcheng Gong
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang,China
| | - Weiwei Xiao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi830017, Xinjiang,China
| | - Ablimit Abdukader
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang,China
| | - Dong Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang,China
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi830017, Xinjiang,China
| |
Collapse
|
5
|
Yunyaeva O, Hean D, Wolf MO. Restricted rotation and tunable fluorescence in atropisomeric naphthyl pyridine chromophores. Org Biomol Chem 2023. [PMID: 38018711 DOI: 10.1039/d3ob01819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Enhanced fluorescence quantum yields are enabled by simple reactions at the heterocyclic nitrogen in naphthyl-pyridine chromophores in which the electronic properties can be tuned through protonation, oxidation, and alkylation at the nitrogen center. Fluorescence quantum yield is increased by reacting the pyridine lone pair with either a proton or an alkyl group. Restricted intramolecular rotation (RIR) was observed upon alkylation, as evidenced by the presence of atropisomers. These simple structural changes allow application-driven tuning of electronic properties.
Collapse
Affiliation(s)
- Olga Yunyaeva
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1.
| | - Duane Hean
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1.
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1.
| |
Collapse
|
6
|
Habib I, Singha K, Hossain M. Transition metal-free C–H activation of heteroarenes: an overview (2018–2022). SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2155837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Imran Habib
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, West Bengal, India
| | - Koustav Singha
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, West Bengal, India
| | - Mossaraf Hossain
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
7
|
Guo Z, Hu F, Lei X. Synthesis of 8-Methyltetrahydroquinoline derivatives functionalized at C-2: a one-pot tandem approach. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2034881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhifo Guo
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX, USA
| | - Feng Hu
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX, USA
| | - Xiangyang Lei
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, TX, USA
| |
Collapse
|
8
|
Wang L, Lin J, Xia C, Sun W. Iridium-Catalyzed Asymmetric Transfer Hydrogenation of Quinolines in Biphasic Systems or Water. J Org Chem 2021; 86:16641-16651. [PMID: 34758620 DOI: 10.1021/acs.joc.1c01925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An asymmetric transfer hydrogenation (ATH) of quinolines in water or biphasic systems was developed. This ATH reaction proceeds smoothly without the need for inert atmosphere protection in the presence of a water-soluble iridium catalyst, which bears an easily available aminobenzimidazole ligand. This ATH system can work at a catalyst loading of 0.001 mol % (S/C = 100 000, turnover number (TON) of up to 33 000) under mild reaction conditions. The turnover frequency (TOF) value can reach as high as 90 000 h-1. A variety of quinoline and N-heteroaryl compounds are transformed into the desired products in high yield and up to 99% enantiomeric excess (ee).
Collapse
Affiliation(s)
- Lixian Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Lin
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Sarmah BK, Konwar M, Das A. Copper-Catalyzed Oxidative Dehydrogenative Reaction of Quinoline- N-Oxides with Donor-Acceptor Cyclopropanes: Installation of a Tertiary Alkyl Motif at C2 Position. Org Lett 2021; 23:8390-8395. [PMID: 34633204 DOI: 10.1021/acs.orglett.1c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed oxidative dehydrogenative reaction of quinoline N-oxides with donor-acceptor cyclopropanes has been demonstrated to construct C2-alkylated quinolines containing a γ-keto diester motif. The use of molecular oxygen as an oxidant, excellent site-selectivity, and good functional group tolerance are the important features in this process. The preliminary mechanistic studies demonstrate that the catalyst plays a dual role as a Lewis acid and a redox catalyst.
Collapse
Affiliation(s)
- Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
10
|
Reidl TW, Bandar JS. Lewis Basic Salt-Promoted Organosilane Coupling Reactions with Aromatic Electrophiles. J Am Chem Soc 2021; 143:11939-11945. [PMID: 34314159 PMCID: PMC8510683 DOI: 10.1021/jacs.1c05764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lewis basic salts promote benzyltrimethylsilane coupling with (hetero)aryl nitriles, sulfones, and chlorides as a new route to 1,1-diarylalkanes. This method combines the substrate modularity and selectivity characteristic of cross-coupling with the practicality of a base-promoted protocol. In addition, a Lewis base strategy enables a complementary scope to existing methods, employs stable and easily prepared organosilanes, and achieves selective arylation in the presence of acidic functional groups. The utility of this method is demonstrated by the synthesis of pharmaceutical analogues and its use in multicomponent reactions.
Collapse
Affiliation(s)
- Tyler W. Reidl
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
11
|
Sarmah BK, Konwar M, Das A. Site-Selective Deoxygenative Amination of Azine N-Oxides with Carbodiimides under Catalyst-, Activator-, Base-, and Solvent-Free Conditions. J Org Chem 2021; 86:10762-10772. [PMID: 34260234 DOI: 10.1021/acs.joc.1c00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operationally simple method for synthesizing 2-amino azines via [3+2] dipolar cycloaddition of azine N-oxide with carbodiimide has been demonstrated. The reaction can proceed smoothly under simple heating conditions without any transition metal catalyst, activator, base, and solvent. This transformation demonstrates a broad substrate scope and produces CO2 as the only co-product. The applicability of this method is highlighted by the late-stage modification of bioactive molecules, including quinine, (±)-α-tocopherol, and tryptamine modified quinoline.
Collapse
Affiliation(s)
- Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
12
|
Polychronidou V, Krupp A, Strohmann C, Antonchick AP. Cascade aza-Wittig/6π-Electrocyclization in the Synthesis of 1,6-Dihydropyridines. Org Lett 2021; 23:6024-6029. [PMID: 34291925 PMCID: PMC8397428 DOI: 10.1021/acs.orglett.1c02099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A metal-free protocol
for the synthesis of substituted 1,6-dihydropyridines
with quaternary stereogenic centers via a cascade aza-Wittig/6π-electrocyclization
process has been developed. The high functional group compatibility
and broad scope of this method were demonstrated by using a wide range
of easily available vinyliminophosphoranes and ketones, with
yields up to 97%. A modification of the obtained products allowed
for an increase in complexity and chemical diversity. Finally, attempts
for asymmetric synthesis of 1,6-dihydropyridines are demonstrated.
Collapse
Affiliation(s)
- Vasiliki Polychronidou
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn- Straße 6, 44227 Dortmund, Germany
| | - Anna Krupp
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn- Straße 6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn- Straße 6, 44227 Dortmund, Germany
| | - Andrey P Antonchick
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn- Straße 6, 44227 Dortmund, Germany.,Nottingham Trent University, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| |
Collapse
|
13
|
Kaur R, Mandal S, Banerjee D, Kumar Yadav A. Transition Metal Free
α
−C−H Functionalization of Six Membered Heteroaromatic‐
N
‐Oxides. ChemistrySelect 2021. [DOI: 10.1002/slct.202100319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ramandeep Kaur
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| | - Sudip Mandal
- Sudip Mandal Centre of Biomedical Research (CBMR) Lucknow India
| | - Debolina Banerjee
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| |
Collapse
|
14
|
Chen H, Guo LN, Sun QX, Chen L, Tao JQ, Gao P. Copper-catalyzed redox neutral ketoalkylation of Csp 2–H bonds via C–C bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00882j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An efficient copper-catalyzed ketoalkylation of Csp2–H bonds with cycloalkyl silyl peroxides under mild conditions is presented. A series of Csp2–H bonds in quinoxalin-2(1H)-ones, heteroaromatic N-oxides and quinones were amenable to this protocol.
Collapse
Affiliation(s)
- He Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing-Xin Sun
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing-Qi Tao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
15
|
Bi W, Zhang W, Li Z, Feng S, Chen X, Qu L. A Practical Synthesis of 1‐Azine‐pyridin‐2(1H)‐ones from Azine
N
‐oxides and Pyridin‐2(1H)‐ones under Mild Reaction Conditions. ChemistrySelect 2020. [DOI: 10.1002/slct.202003792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Wen‐Zhu Bi
- School of Pharmacy Henan University of Chinese Medicine Henan Province Zhengzhou 450046 P. R. China
| | - Wen‐Jie Zhang
- School of Pharmacy Henan University of Chinese Medicine Henan Province Zhengzhou 450046 P. R. China
| | - Zi‐Jie Li
- School of Pharmacy Henan University of Chinese Medicine Henan Province Zhengzhou 450046 P. R. China
| | - Su‐Xiang Feng
- School of Pharmacy Henan University of Chinese Medicine Henan Province Zhengzhou 450046 P. R. China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province Henan University of Chinese Medicine Henan Province Zhengzhou 450046 P. R. China
- Zhengzhou Key Laboratory of Chinese Medicine Quality Control and Evaluation Henan University of Chinese Medicine Henan Province Zhengzhou 450046 P. R. China
| | - Xiao‐Lan Chen
- College of Chemistry Zhengzhou University Henan Province Zhengzhou 450001 P. R. China
| | - Ling‐Bo Qu
- College of Chemistry Zhengzhou University Henan Province Zhengzhou 450001 P. R. China
| |
Collapse
|
16
|
Mathi GR, Kweon B, Moon Y, Jeong Y, Hong S. Regioselective C−H Functionalization of Heteroarene
N
‐Oxides Enabled by a Traceless Nucleophile. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gangadhar Rao Mathi
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Byeongseok Kweon
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yujin Jeong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
17
|
Mathi GR, Kweon B, Moon Y, Jeong Y, Hong S. Regioselective C-H Functionalization of Heteroarene N-Oxides Enabled by a Traceless Nucleophile. Angew Chem Int Ed Engl 2020; 59:22675-22683. [PMID: 32888227 DOI: 10.1002/anie.202010597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Although N-alkenoxyheteroarenium salts have been widely used as umpoled synthons with nucleophilic (hetero)arenes, the use of electron-poor heteroarenes has remained unexplored. To overcome the inherent electron deficiency of quinolinium salts, a traceless nucleophile-triggered strategy was designed, wherein the quinolinium segment is converted into a dearomatized intermediate, thereby allowing simultaneous C8-functionalization of quinolines at room temperature. Experimental and computational studies support the traceless operation of a nucleophile, which enables the previously inaccessible transformation of N-alkenoxyheteroarenium salts. Remarkably, the generality of this strategy has been further demonstrated by broad applications in the regioselective C-H functionalization of other electron-deficient heteroarenes such as phenanthridine, isoquinoline, and pyridine N-oxides, offering a practical tool for the late-stage functionalization of complex biorelevant molecules.
Collapse
Affiliation(s)
- Gangadhar Rao Mathi
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Byeongseok Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yonghoon Moon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yujin Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
18
|
Baykov SV, Boyarskiy VP. Metal-Free Functionalization of Azine N-Oxides with Electrophilic Reagents. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02737-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Jo W, Baek SY, Hwang C, Heo J, Baik MH, Cho SH. ZnMe2-Mediated, Direct Alkylation of Electron-Deficient N-Heteroarenes with 1,1-Diborylalkanes: Scope and Mechanism. J Am Chem Soc 2020; 142:13235-13245. [DOI: 10.1021/jacs.0c06827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seung-yeol Baek
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Chiwon Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joon Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
20
|
Lee SH, Kwon NY, Lee JY, An W, Jung YH, Mishra NK, Ghosh P, Park JS, Kim IS. Transition-Metal-Free and Site-Selective Selenylation of Heterocyclic N
-Oxides in Anisole as a Green Solvent. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suk Hun Lee
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | - Ji Yoon Lee
- Department of Chemistry; Sookmyung Women's University; 04310 Seoul Republic of Korea
| | - Won An
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | | | - Prithwish Ghosh
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | - Jung Su Park
- Department of Chemistry; Sookmyung Women's University; 04310 Seoul Republic of Korea
| | - In Su Kim
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| |
Collapse
|
21
|
Sarmah BK, Konwar M, Bhattacharyya D, Adhikari P, Das A. Regioselective Cyanation of Six‐MemberedN‐Heteroaromatic Compounds Under Metal‐, Activator‐, Base‐ and Solvent‐Free Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bikash Kumar Sarmah
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | - Monuranjan Konwar
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | | | - Priyanka Adhikari
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| | - Animesh Das
- Department of ChemistryIndian Institute of Technology Guwahati 781039, Assam India
| |
Collapse
|
22
|
Ghosh P, Kwon NY, Han S, Kim S, Han SH, Mishra NK, Jung YH, Chung SJ, Kim IS. Site-Selective C-H Alkylation of Diazine N-Oxides Enabled by Phosphonium Ylides. Org Lett 2019; 21:6488-6493. [PMID: 31373494 DOI: 10.1021/acs.orglett.9b02365] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis of alkylated diazine derivatives is important for their practical utilization as pharmaceuticals and for other purposes. Herein, we describe the metal-free site-selective C-H alkylation of diazine N-oxides using phosphonium ylides that affords a variety of alkylated diazine derivatives with broad functional group tolerance. The utility of this method is showcased by the late-stage functionalization of a commercially available drug such as varenicline. Notably, the sequential C-H alkylation of pyrazine N-oxides for the total synthesis of a pyrazine-containing natural product, paenibacillin A, highlights the importance of this method.
Collapse
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sangil Han
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Saegun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sang J Chung
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - In Su Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|