1
|
Zhang WF, Lu CD. Stereoselective Enesulfinamide-Sulfinylimine Tautomerization of β,β-Disubstituted Enesulfinamides. Org Lett 2024; 26:10999-11004. [PMID: 39631841 DOI: 10.1021/acs.orglett.4c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the presence of cesium fluoride and organosilicon reagent, β,β-disubstituted NH-enesulfinamides undergo stereoselective enesulfinamide-sulfinylimine tautomerization at room temperature, resulting in the formation of α-branched N-sulfinyl ketimines in good yields with high stereoselectivity. A variety of acyclic ketone surrogates α-substituted with two electronically and sterically similar groups (e.g., methyl and ethyl), which are typically challenging to access through conventional protocols involving stereoselective protonation of enolates and their equivalents, have been effectively synthesized.
Collapse
Affiliation(s)
- Wan-Fu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- Southwest United Graduate School, Kunming, Yunnan 650092, China
| |
Collapse
|
2
|
Liu Y, Ma T, Guo Z, Zhou L, Liu G, He Y, Ma L, Gao J, Bai J, Hollmann F, Jiang Y. Asymmetric α-benzylation of cyclic ketones enabled by concurrent chemical aldol condensation and biocatalytic reduction. Nat Commun 2024; 15:71. [PMID: 38167391 PMCID: PMC10761851 DOI: 10.1038/s41467-023-44452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Chemoenzymatic cascade catalysis has emerged as a revolutionary tool for streamlining traditional retrosynthetic disconnections, creating new possibilities for the asymmetric synthesis of valuable chiral compounds. Here we construct a one-pot concurrent chemoenzymatic cascade by integrating organobismuth-catalyzed aldol condensation with ene-reductase (ER)-catalyzed enantioselective reduction, enabling the formal asymmetric α-benzylation of cyclic ketones. To achieve this, we develop a pair of enantiocomplementary ERs capable of reducing α-arylidene cyclic ketones, lactams, and lactones. Our engineered mutants exhibit significantly higher activity, up to 37-fold, and broader substrate specificity compared to the parent enzyme. The key to success is due to the well-tuned hydride attack distance/angle and, more importantly, to the synergistic proton-delivery triade of Tyr28-Tyr69-Tyr169. Molecular docking and density functional theory (DFT) studies provide important insights into the bioreduction mechanisms. Furthermore, we demonstrate the synthetic utility of the best mutants in the asymmetric synthesis of several key chiral synthons.
Collapse
Affiliation(s)
- Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Teng Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhongxu Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jing Bai
- College of Food Science and Biology, Hebei University of Science & Technology, Shijiazhuang, 050018, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, The Netherlands.
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
3
|
Quaternary phosphonium salts in the synthetic chemistry: Recent progress, development, and future perspectives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Yu L, Liu J, Wang H, Xu L, Wu Y, Zheng C, Zhao G. Asymmetric Dieckmann Condensation towards Spirocyclic Oxindoles Catalyzed by Amino Acid‐Derived Phosphonium Salts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Hongyu Wang
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Lijun Xu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Yufei Wu
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Changwu Zheng
- Innovation Research Institute of Traditional Chinese Medicine School of Pharmacy Shanghai University of Traditional Chinese Medicine Shanghai 201203 People's Republic of China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
- Innovation Research Institute of Traditional Chinese Medicine School of Pharmacy Shanghai University of Traditional Chinese Medicine Shanghai 201203 People's Republic of China
| |
Collapse
|
5
|
Wakafuji K, Iwasa S, Ouchida KN, Cho H, Dohi H, Yamamoto E, Kamachi T, Tokunaga M. Dynamic Kinetic Resolution of Azlactones via Phase-Transfer Catalytic Alcoholysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kodai Wakafuji
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satsuki Iwasa
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kina N. Ouchida
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hyemin Cho
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirotsugu Dohi
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eiji Yamamoto
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Kamachi
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Makoto Tokunaga
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Fang G, Wang H, Zheng C, Pan L, Zhao G. Enantioselectivity switch in asymmetric Michael addition reactions using phosphonium salts. Org Biomol Chem 2021; 19:6334-6340. [PMID: 34231639 DOI: 10.1039/d1ob01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient access to two enantiomers of one chiral compound is critical for the discovery of drugs. However, it is still a challenging problem owing to the difficulty in obtaining two enantiomers of one chiral catalyst. Here, we report a general method to obtain both enantiomeric products via fine tuning the hydrogen-bonding interactions of phosphonium salts. Amino acid derived phosphonium salts and dipeptide derived phosphonium salts exhibited different properties for controlling the transition state, which could efficiently promote the Michael addition reaction to give opposite configurations of products with high yields and enantioselectivities. Preliminary investigations on the mechanism of the reaction and applications of the products were also performed.
Collapse
Affiliation(s)
- Guosheng Fang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Hongyu Wang
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Changwu Zheng
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Lu Pan
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Gang Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China. and Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| |
Collapse
|
7
|
Murakami H, Yamada A, Michigami K, Takemoto Y. Novel Aza‐Michael Addition‐Asymmetric Protonation to α,β‐Unsaturated Carboxylic Acids with Chiral Thiourea‐Boronic Acid Hybrid Catalysts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hiroki Murakami
- Graduate School of Pharmaceutical Sciences Kyoto university 46–29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Ayano Yamada
- Graduate School of Pharmaceutical Sciences Kyoto university 46–29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Kenichi Michigami
- Graduate School of Pharmaceutical Sciences Kyoto university 46–29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto university 46–29 Shimoadachi-cho, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
8
|
Cao J, Zhu SF. Catalytic Enantioselective Proton Transfer Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jin Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
9
|
Affiliation(s)
- Hongxiang Li
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Honglei Liu
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University Beijing 100193 People's Republic of China
- College of Public Health Zhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|
10
|
A flexible strategy for the synthesis of bifunctional 6′-(thio)-urea containing Cinchona alkaloid ammonium salts. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Xu L, Yu L, Liu J, Wang H, Zheng C, Zhao G. Enantioselective Vinylogous Mannich‐Type Reactions to Construct CF
3
S‐Containing Stereocenters Catalysed by Chiral Quaternary Phosphonium Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lijun Xu
- Research Center of Resource Recycling Science and Engineering, College of Arts and SciencesShanghai Polytechnic University 2360 Jinhai Road Shanghai 201209 People's Republic of China
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Longhui Yu
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Jun Liu
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Hongyu Wang
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Changwu Zheng
- College of PharmacyShanghai University of Traditional Chinese Medicine Shanghai 201203 People's Republic of China
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural SubstancesShanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|