1
|
Fehr JM, Myrthil N, Garrison AL, Price TW, Lopez SA, Jasti R. Experimental and theoretical elucidation of SPAAC kinetics for strained alkyne-containing cycloparaphenylenes. Chem Sci 2023; 14:2839-2848. [PMID: 36937573 PMCID: PMC10016359 DOI: 10.1039/d2sc06816h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
Tuning strained alkyne reactivity via organic synthesis has evolved into a burgeoning field of study largely focused on cyclooctyne, wherein physical organic chemistry helps guide rational molecular design to produce molecules with intriguing properties. Concurrent research in the field of carbon nanomaterials has produced new types of strained alkyne macrocycles, such as cycloparaphenyleneacetylenes, that possess uniquely curved aromatic π systems but hover on the edge of stability. In 2018, we introduced a strained alkyne scaffold that marries the synthetic accessibility and stability of cyclooctyne with the curved π system of carbon nanomaterials. These molecules are strained alkyne-containing cycloparaphenylenes (or [n+1]CPPs), which have been shown to possess size-dependent reactivity as well as the classic characteristics of the unfunctionalized parent CPP, such as a tunable HOMO-LUMO gap and bright fluorescence for large sizes. Herein, we elaborate further on this scaffold, introducing two modifications to the original design and fully characterizing the kinetics of the strain-promoted azide-alkyne cycloaddition (SPAAC) for each [n+1]CPP with a model azide. Additionally, we explain how electronic (the incorporation of fluorine atoms) and strain (a meta linkage which heightens local strain at the alkyne) modulations affect SPAAC reactivity via the distortion-interaction computational model. Altogether, these results indicate that through a modular synthesis and rational chemical design, we have developed a new family of tunable and inherently fluorescent strained alkyne carbon nanomaterials.
Collapse
Affiliation(s)
- Julia M Fehr
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene Oregon 97403 USA
| | - Nathalie Myrthil
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| | - Anna L Garrison
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene Oregon 97403 USA
| | - Tavis W Price
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene Oregon 97403 USA
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University Boston Massachusetts 02115 USA
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene Oregon 97403 USA
| |
Collapse
|
2
|
Stawski W, Van Raden JM, Patrick CW, Horton PN, Coles SJ, Anderson HL. Strained Porphyrin Tape-Cycloparaphenylene Hybrid Nanorings. Org Lett 2023; 25:378-383. [PMID: 36626241 PMCID: PMC9872170 DOI: 10.1021/acs.orglett.2c04089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
V-Shaped porphyrin dimers, with masked p-phenylene bridges, undergo efficient oxidative coupling to form meso-meso linked cyclic porphyrin oligomers. Reductive aromatization unmasks the p-phenylenes, increasing the strain. Oxidation then fuses the porphyrin dimers, providing a nanoring with curved walls. The strain in this macrocycle bends the p-phenylene and fused porphyrin dimer units (radii of curvature of 11.4 and 19.0 Å, respectively), but it does not significantly alter the electronic structure of the fused porphyrins.
Collapse
Affiliation(s)
- Wojciech Stawski
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Jeff M. Van Raden
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Connor W. Patrick
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.
| | - Peter N. Horton
- UK
National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Harry L. Anderson
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.,
| |
Collapse
|
3
|
Zhou X, Kwon H, Thompson RR, Herman RJ, Fronczek FR, Bruns CJ, Lee S. Scalable synthesis of [8]cycloparaphenyleneacetylene carbon nanohoop using alkyne metathesis. Chem Commun (Camb) 2021; 57:10887-10890. [PMID: 34604870 DOI: 10.1039/d1cc04776k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large scale synthesis of cycloparaphenyleneacetylenes has been challenging due to low macrocyclization yields and harsh aromatization methods that often decompose strained alkynes. Herein, a cis-stilbene-based building block is subjected to alkyne metathesis macrocylization. The following sequence of alkene-selective bromination and dehydrobromination afforded a [8]cycloparaphenyleneacetylene derivative in high yield with good scalability. X-Ray crystal structure and computational analysis revealed a unique same-rim conformation for the eight methyl groups on the nanohoop.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, USA.
| | - Hyejin Kwon
- College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Richard R Thompson
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, USA.
| | - Robert J Herman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, USA.
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, USA.
| | - Carson J Bruns
- College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, USA. .,ATLAS Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Semin Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, USA.
| |
Collapse
|
4
|
Thompson RR, Rotella ME, Zhou X, Fronczek FR, Gutierrez O, Lee S. Impact of Ligands and Metals on the Formation of Metallacyclic Intermediates and a Nontraditional Mechanism for Group VI Alkyne Metathesis Catalysts. J Am Chem Soc 2021; 143:9026-9039. [PMID: 34110130 PMCID: PMC8227475 DOI: 10.1021/jacs.1c01843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The
intermediacy of metallacyclobutadienes as part of a [2 + 2]/retro-[2
+ 2] cycloaddition-based mechanism is a well-established paradigm
in alkyne metathesis with alternative species viewed as off-cycle
decomposition products that interfere with efficient product formation.
Recent work has shown that the exclusive intermediate isolated from
a siloxide podand-supported molybdenum-based catalyst was not the
expected metallacyclobutadiene but instead a dynamic metallatetrahedrane.
Despite their paucity in the chemical literature, theoretical work
has shown these species to be thermodynamically more stable as well
as having modest barriers for cycloaddition. Consequentially, we report
the synthesis of a library of group VI alkylidynes as well as the
roles metal identity, ligand flexibility, secondary coordination sphere,
and substrate identity all have on isolable intermediates. Furthermore,
we report the disparities in catalyst competency as a function of
ligand sterics and metal choice. Dispersion-corrected DFT calculations
are used to shed light on the mechanism and role of ligand and metal
on the intermediacy of metallacyclobutadiene and metallatetrahedrane
as well as their implications to alkyne metathesis.
Collapse
Affiliation(s)
- Richard R Thompson
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Madeline E Rotella
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xin Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Semin Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Huang S, Lei Z, Jin Y, Zhang W. By-design molecular architectures via alkyne metathesis. Chem Sci 2021; 12:9591-9606. [PMID: 34349932 PMCID: PMC8293811 DOI: 10.1039/d1sc01881g] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022] Open
Abstract
Shape-persistent purely organic molecular architectures have attracted tremendous research interest in the past few decades. Dynamic Covalent Chemistry (DCvC), which deals with reversible covalent bond formation reactions, has emerged as an efficient synthetic approach for constructing these well-defined molecular architectures. Among various dynamic linkages, the formation of ethynylene linkages through dynamic alkyne metathesis is of particular interest due to their high chemical stability, linearity, and rigidity. In this review, we focus on the synthetic strategies of discrete molecular architectures (e.g., macrocycles, molecular cages) containing ethynylene linkages using alkyne metathesis as the key step, and their applications. We will introduce the history and challenges in the synthesis of those architectures via alkyne metathesis, the development of alkyne metathesis catalysts, the reported novel macrocycle structures, molecular cage structures, and their applications. In the end, we offer an outlook of this field and remaining challenges. The recent synthesis of novel shape-persistent 2D and 3D molecular architectures via alkyne metathesis is reviewed and the critical role of catalysts is also highlighted.![]()
Collapse
Affiliation(s)
- Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder 80309 USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder 80309 USA
| |
Collapse
|
6
|
Wang LH, Hayase N, Sugiyama H, Nogami J, Uekusa H, Tanaka K. Synthesis, Structures, and Properties of Highly Strained Cyclophenylene-Ethynylenes with Axial and Helical Chirality. Angew Chem Int Ed Engl 2020; 59:17951-17957. [PMID: 32618087 DOI: 10.1002/anie.202006959] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/13/2022]
Abstract
Single and double cyclophenylene-ethynylenes (CPEs) with axial and helical chirality have been synthesized by the Sonogashira cross-coupling of di- and tetraethynyl biphenyls with a U-shaped prearomatic diiodoparaphenylene followed by reductive aromatization. X-ray crystallographic analyses and DFT calculations revealed that the CPEs possess highly twisted bent structures. Bend angles on the edge of the paraphenylene units were close to the value of [5]cycloparaphenylene (CPP)-the smallest CPP to date. The double and single CPEs possessed stable chirality despite flexible biphenyl structures because of the high strain in the diethynyl-paraphenylene moiety. In both the single and double CPEs, orbital interactions along the biphenyl axis were observed by DFT calculations in LUMO and LUMO+2 of the single CPE and LUMO+1 of the double CPE, which likely cause lowering of these orbital energies. Concerning chiroptical properties: boosting of the gabs value was observed in the biphenyl-based double CPE, as well as the binaphthyl-based single CPE, compared to the biphenyl-based single CPE.
Collapse
Affiliation(s)
- Li-Hsiang Wang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Norihiko Hayase
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku, Yokohama, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
7
|
Wang L, Hayase N, Sugiyama H, Nogami J, Uekusa H, Tanaka K. Synthesis, Structures, and Properties of Highly Strained Cyclophenylene–Ethynylenes with Axial and Helical Chirality. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Norihiko Hayase
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences Keio University Hiyoshi 4-1-1, Kohoku Yokohama Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
8
|
Zhao H, Cao L, Huang S, Ma C, Chang Y, Feng K, Zhao LL, Zhao P, Yan X. Synthesis, Structure, and Photophysical Properties of m-Phenylene-Embedded Cycloparaphenylene Nanorings. J Org Chem 2020; 85:6951-6958. [PMID: 32408749 DOI: 10.1021/acs.joc.0c00232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Five m-phenylene-embedded cycloparaphenylenes m3[9]CPP 1-5 were synthesized by the platinum-mediated cyclooligomerization strategy with high overall yields. The structures of m3[9]CPP 1-3 were determined by X-ray diffraction analysis. Compared to [9]CPP, m3[9]CPP 1 caused a significant blueshift in the UV-vis absorption and fluorescence spectra. This result shows that the radial π-conjugation is distorted and partially interrupted. The photophysical properties of m3[9]CPP 1 were further tuned by the introduction of various substituents for m3[9]CPP 2-5. Methoxy group substitution at m-phenylene did not change the photophysical properties significantly. Replacement of m-phenylene by tetrafluoro-m-phenylene achieved a significant blueshift. When the carboxyl group was embedded at m-phenylene or the methoxy group was embedded at p-phenylene, significant redshifts were observed with blue color emission. Theoretical calculations revealed that the decrease in the HOMO-LUMO gap in m3[9]CPP 4 and 5 is favorable for the redshift of the fluorescence spectrum.
Collapse
Affiliation(s)
- Hongyan Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Lei Cao
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Chenxing Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yunhao Chang
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Kai Feng
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Liang-Liang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| | - Peng Zhao
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
9
|
Miki K, Ohe K. π‐Conjugated Macrocycles Bearing Angle‐Strained Alkynes. Chemistry 2019; 26:2529-2575. [DOI: 10.1002/chem.201904114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/24/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615–8510 Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615–8510 Japan
| |
Collapse
|
10
|
Thompson RR, Rotella ME, Du P, Zhou X, Fronczek FR, Kumar R, Gutierrez O, Lee S. Siloxide Podand Ligand as a Scaffold for Molybdenum-Catalyzed Alkyne Metathesis and Isolation of a Dynamic Metallatetrahedrane Intermediate. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00430] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard R. Thompson
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Madeline E. Rotella
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Pu Du
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Xin Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Semin Lee
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70810, United States
| |
Collapse
|