1
|
Chen F, Cao Z, Zhu C. Intramolecularly remote functional group migration reactions involving free radicals. Chem Commun (Camb) 2024; 60:14912-14923. [PMID: 39601626 DOI: 10.1039/d4cc05739b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The application of rearrangement reactions offers opportunities for the efficient construction of complex molecules that are challenging to obtain through conventional synthetic methods. However, the development of radical-mediated rearrangements has lagged far behind that of ionic-type rearrangements, due to the uncontrollability of radical species. Along with the recent renaissance in radical chemistry, radical-mediated functional group migration (FGM) reactions provide a versatile platform for the selective incorporation of functional groups across different molecular distances, enabling the construction of intricate molecular architectures. In the past few years, FGM reactions have showcased plentiful reaction modes, rendering precious control in terms of chemo- and regio-selectivities. This feature article summarizes our achievements in radical-mediated FGM reactions, wherein brief discussion of related works from other laboratories is also included. In this feature article, we aim to provide a comprehensive understanding of the progress in this emerging area.
Collapse
Affiliation(s)
- Fushan Chen
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Gharpure SJ, Chavan RS, Fartade DJ. Iron-Mediated Segment Coupling of Alkenols with Acceptors via C-C Radical Translocation and Remote Oxidative 1,5/6-Hydrogen Atom Transfer. Org Lett 2024. [PMID: 39516177 DOI: 10.1021/acs.orglett.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Iron-mediated segment coupling followed by oxidative 1,5/6-hydrogen atom transfer (HAT) for synthesis of ε-oxo alkene derivatives is developed. This transformation involved translocation of the radical from H-to-C-to-C-to-C followed by the oxidation under MHAT conditions providing rapid access to 1,6/1,7-keto functionalized esters/ketone/sulfones/phosphonates/arenes. The different outcomes of coupling with acceptors could be explained by bond dissociation energies (BDEs), and mechanistic insights were gained through control experiments, including deuterium labeling studies.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rupali S Chavan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dipak J Fartade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
He Y, Bian KJ, Liu P, Jiang CH, Jin RX, West JG, Wang XS. Remote Functionalization of Inert C(sp 3)-H Bonds via Dual Catalysis Driven by Alkene Hydrofluoroalkylation Using Industrial Feedstocks. Org Lett 2024; 26:8278-8283. [PMID: 39298654 DOI: 10.1021/acs.orglett.4c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We have developed a dual-catalytic system capable of site-selective azidation of inert C(sp3)-H bonds with concomitant and modular anti-Markovnikov alkene fluoroalkylation. The protocol leverages the synergetic cooperation of both the photocatalyst and earth-abundant iron catalyst to deliver two radical species in succession to minimally functionalized alkenes. This powerful catalyst system exhibits broad scope, mild conditions, and excellent regioselectivity for a variety of substrates and fluoroalkyl fragments. The key to this C-centered radical relay is the matched rate of both photocatalytic and iron catalytic cycles, ensuring selective azidofluoroalkylation with a broad array of fluoroalkyl sources from trivial reagents.
Collapse
Affiliation(s)
- Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Kang-Jie Bian
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Peng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Chen-Hui Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main Street, Houston, Texas 77030, United States
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
4
|
Zhao X, Chen D, Zhu S, Luo J, Liao S, Zheng B, Huang S. Fluorosulfonylvinylation of Unactivated C(sp 3)-H via Electron Donor-Acceptor Photoactivation. Org Lett 2023; 25:3109-3113. [PMID: 37083288 DOI: 10.1021/acs.orglett.3c00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
An electron donor-acceptor (EDA) complex photoactivation strategy for radical fluorosulfonylation is disclosed for the first time. Simply upon blue light irradiation, the FSO2 radical can be generated efficiently under catalyst-free, base-free, and additive-free conditions, which enables facile access to 6-keto alkenylsulfonyl fluorides from readily available propargyl alcohols and FSO2Cl. The 6-keto alkenylsulfonyl fluoride motif has been showcased as a versatile SuFEx hub with diverse follow-up derivatizations.
Collapse
Affiliation(s)
- Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengzhen Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, China
| | - Binnan Zheng
- Ningxia Best Pharmaceutical Chemical Co., Ltd., Yinchuan, Ningxia Hui Autonomous Region 750411, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
5
|
Li L, Li JZ, Sun YB, Luo CM, Qiu H, Tang K, Liu H, Wei WT. Visible-Light-Catalyzed Tandem Radical Addition/1,5-Hydrogen Atom Transfer/Cyclization of 2-Alkynylarylethers with Sulfonyl Chlorides. Org Lett 2022; 24:4704-4709. [PMID: 35724683 DOI: 10.1021/acs.orglett.2c01977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel visible-light-catalyzed tandem radical addition/1,5-hydrogen atom transfer/cyclization cascade of 2-alkynylarylethers with sulfonyl chlorides in 2-methyltetrahydrofuran was developed under photocatalyst- and additive-free conditions. This reaction relies on unique energy transfer and solvent-radical relay strategies to generate sulfonyl radicals for the preparation of a series of sulfonyl-functionalized dihydrobenzofurans in moderate to high yields catalyzed by visible light or solar radiation.
Collapse
Affiliation(s)
- Long Li
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiao-Zhe Li
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hui Qiu
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
6
|
Wu X, Zhu C. Combination of radical functional group migration (FGM) and hydrogen atom transfer (HAT). TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Yue B, Wu X, Zhu C. Recent Advances in Vinyl Radical-Mediated Hydrogen Atom Transfer. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
9
|
Dong X, Jiang W, Hua D, Wang X, Xu L, Wu X. Radical-mediated vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes. Chem Sci 2021; 12:11762-11768. [PMID: 34659713 PMCID: PMC8442677 DOI: 10.1039/d1sc03315h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
The addition of sulfonyl radicals to alkenes and alkynes is a valuable method for constructing useful highly functionalized sulfonyl compounds. The underexplored alkoxy- and fluorosulfonyl radicals are easily accessed by CF3 radical addition to readily available allylsulfonic acid derivatives and then β-fragmentation. These substituted sulfonyl radicals add to aryl alkyl alkynes to give vinyl radicals that are trapped by trifluoromethyl transfer to provide tetra-substituted alkenes bearing the privileged alkoxy- or fluorosulfonyl group on one carbon and a trifluoromethyl group on the other. This process exhibits broad functional group compatibility and allows for the late-stage functionalization of drug molecules, demonstrating its potential in drug discovery and chemical biology. An unprecedented method for vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes has been developed to afford useful alkenylsulfonate esters and alkenylsulfonyl fluorides.![]()
Collapse
Affiliation(s)
- Xinrui Dong
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Wenhua Jiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Dexiang Hua
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Xiaohui Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Liang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| |
Collapse
|
10
|
Wang D, Jana K, Studer A. Intramolecular Hydrogen Atom Transfer Induced 1,2-Migration of Boronate Complexes. Org Lett 2021; 23:5876-5879. [PMID: 34260254 PMCID: PMC8353630 DOI: 10.1021/acs.orglett.1c01998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Radical α-C-H
functionalization of alk-5-enyl boronic esters
with concomitant functionalization of the alkene moiety is reported.
These cascades comprise perfluoroalkyl radical addition to the alkene
moiety of a boronate complex, intramolecular hydrogen atom transfer
(HAT), single electron oxidation, and 1,2-alkyl/aryl migration. The
boronate complexes are readily generated in situ by reaction of the
alkenyl boronic esters with alkyl or aryl lithium reagents. Products
are formed in a divergent approach by varying carbon radical precursors
as well as alkyl/aryl lithium donors, and reactions proceed under
mild conditions upon UV irradiation.
Collapse
Affiliation(s)
- Dinghai Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Kalipada Jana
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
11
|
Bao P, Yu F, He FS, Tang Z, Deng WP, Wu J. Visible-light-induced remote C(sp3)–H sulfonylvinylation: assembly of cyanoalkylated vinyl sulfones. Org Chem Front 2021. [DOI: 10.1039/d1qo00732g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoinduced three-component sulfonylvinylation reaction of propargyl alcohols, potassium metabisulfite and cycloketone oxime esters is developed, affording cyanoalkylated vinyl sulfones in moderate to good yields.
Collapse
Affiliation(s)
- Ping Bao
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Feiyan Yu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, China
| |
Collapse
|
12
|
Guo W, Wang Q, Zhu J. Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem Soc Rev 2021; 50:7359-7377. [DOI: 10.1039/d0cs00774a] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of heteroatom-centred radicals followed by intramolecular 1,5-HAT and functionalisation of the translocated carbon-centred radical is an efficient way to functionalize chemo- and regio-selectively the remote unactivated C(sp3)–H bond.
Collapse
Affiliation(s)
- Weisi Guo
- College of Chemistry & Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao
- P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- 1015 Lausanne
- Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- 1015 Lausanne
- Switzerland
| |
Collapse
|
13
|
Chen L, Zou YX, Zheng SL, Liu XY, Yang HL, Zhang J, Zeng Y, Duan L, Wen Z, Ni HL. Dearomative 1,6-addition of P(O)–H to in situ formed p-QM-like ion pairs from 2-benzofuryl-ols to C3-phosphinoyl hydrobenzofurans. Org Chem Front 2021. [DOI: 10.1039/d1qo00076d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report a dearomative C3-phosphorylation and a tandem C3-phosphorylation/aromatization of 2-benzofuryl-ols with P(O)–H species to afford C3-phosphinoyl hydrobenzofurans and benzofurans, respectively.
Collapse
|
14
|
Zhang P, Zhang T, Cai P, Jiang B, Tu S. Study on tert-Butyl Radical-Initiated 1,2-Alkynyl Migration. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Cao Z, Zhang H, Wu X, Li Y, Zhu C. Radical heteroarylation of unactivated remote C(sp 3)–H bonds via intramolecular heteroaryl migration. Org Chem Front 2021. [DOI: 10.1039/d1qo01209f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Described herein is the radical-mediated heteroarylation of unactivated remote C(sp3)–H bonds via intramolecular heteroaryl migration.
Collapse
Affiliation(s)
- Zhu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Yahong Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Zhong LJ, Li Y, An DL, Li JH. Heteroannulation of N-Fluoro-N-alkylsulfonamides with Terminal Alkynes via Remote C(sp3)–H Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03853] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Long-Jin Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - De-Lie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
17
|
Azizollahi H, García-López JA. Recent Advances on Synthetic Methodology Merging C-H Functionalization and C-C Cleavage. Molecules 2020; 25:E5900. [PMID: 33322116 PMCID: PMC7764206 DOI: 10.3390/molecules25245900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
The functionalization of C-H bonds has become a major thread of research in organic synthesis that can be assessed from different angles, for instance depending on the type of catalyst employed or the overall transformation that is carried out. This review compiles recent progress in synthetic methodology that merges the functionalization of C-H bonds along with the cleavage of C-C bonds, either in intra- or intermolecular fashion. The manuscript is organized in two main sections according to the type of substrate in which the cleavage of the C-C bond takes place, basically attending to the scission of strained or unstrained C-C bonds. Furthermore, the related research works have been grouped on the basis of the mechanistic aspects of the different transformations that are carried out, i.e.,: (a) classic transition metal catalysis where organometallic intermediates are involved; (b) processes occurring via radical intermediates generated through the use of radical initiators or photochemically; and (c) reactions that are catalyzed or mediated by suitable Lewis or Brønsted acid or bases, where molecular rearrangements take place. Thus, throughout the review a wide range of synthetic approaches show that the combination of C-H and C-C cleavage in single synthetic operations can serve as a platform to achieve complex molecular skeletons in a straightforward manner, among them interesting carbo- and heterocyclic scaffolds.
Collapse
Affiliation(s)
- Hamid Azizollahi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
| | | |
Collapse
|
18
|
Sarkar S, Cheung KPS, Gevorgyan V. C-H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals. Chem Sci 2020; 11:12974-12993. [PMID: 34123240 PMCID: PMC8163321 DOI: 10.1039/d0sc04881j] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
Selective functionalization of ubiquitous unactivated C-H bonds is a continuous quest for synthetic organic chemists. In addition to transition metal catalysis, which typically operates under a two-electron manifold, a recent renaissance in the radical approach relying on the hydrogen atom transfer (HAT) process has led to tremendous growth in the area. Despite several challenges, protocols proceeding via HAT are highly sought after as they allow for relatively easy activation of inert C-H bonds under mild conditions leading to a broader scope and higher functional group tolerance and sometimes complementary reactivity over methods relying on traditional transition metal catalysis. A number of methods operating via heteroatom-based HAT have been extensively reported over the past few years, while methods employing more challenging carbon analogues have been less explored. Recent developments of mild methodologies for generation of various carbon-centered radical species enabled their utilization in the HAT process, which, in turn, led to the development of remote C(sp3)-H functionalization reactions of alcohols, amines, amides and related compounds. This review covers mostly recent advances in C-H functionalization reactions involving the HAT step to carbon-centered radicals.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, University of Texas at Dallas 800 W Campbell Rd Richardson Texas 75080 USA
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, University of Texas at Dallas 800 W Campbell Rd Richardson Texas 75080 USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas 800 W Campbell Rd Richardson Texas 75080 USA
| |
Collapse
|
19
|
Shao X, Wu X, Wu S, Zhu C. Metal-Free Radical-Mediated C(sp3)–H Heteroarylation of Alkanes. Org Lett 2020; 22:7450-7454. [DOI: 10.1021/acs.orglett.0c02475] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Shao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthesis Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
20
|
He F, Yao Y, Xie W, Wu J. Metal‐Free Synthesis of (
E
)‐Vinyl Sulfones
via
An Insertion of Sulfur Dioxide/1,5‐Hydrogen Atom Transfer Sequence. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fu‐Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Yanfang Yao
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
21
|
Bian KJ, Li Y, Zhang KF, He Y, Wu TR, Wang CY, Wang XS. Iron-catalyzed remote functionalization of inert C(sp 3)-H bonds of alkenes via 1, n-hydrogen-atom-transfer by C-centered radical relay. Chem Sci 2020; 11:10437-10443. [PMID: 34123184 PMCID: PMC8162260 DOI: 10.1039/d0sc03987j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As an alternative approach to traditional C-H activation that often involved harsh conditions, and vicinal or primary C-H functionalization, radical relay offers a solution to these long-held problems. Enabled by 1,n (n = 5, 6)-hydrogen atom transfer (HAT), we use a most prevalent moiety, alkene, as the precursor to an sp3 C-centered radical to promote selective cleavage of inert C(sp3)-H bonds for the generation of azidotrifluoromethylated molecules. Mild conditions, broad scope and excellent regioselective control (>20 : 1) are observed in the reactions. Deuterium labelling studies disclose the kinetic characteristics of the transformations and verify a direct 1,n-HAT pathway. The key to this C-centered radical relay is that iron plays a dual role as a radical initiator and terminator to incorporate the azide functionality through radical oxidation via azido-ligand-transfer. The methods and the later derivatization promise expeditious synthesis of CF3-containing organic azides, γ-lactam and triazoles that are widely used in designing new fluorescent tags and functional materials.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Kai-Fan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Cheng-Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
22
|
Abstract
Alkenes are ubiquitous in natural products and are extensively used as synthetic feedstocks in multiple fields including organic synthesis, medicinal chemistry, and materials science. Radical-mediated difunctionalization of alkenes provides a powerful tactic for alkene utilization. Despite the considerable progress made in the past several decades, state-of-the-art methods are highly dependent upon activated alkenes in which a proximal group with a π-electron system (e.g., aryl, carbonyl, and heteroatom) is requisite to stabilize the nascent alkyl radical intermediate via p-π conjugation or p orbitals of the heteroatom. In contrast, the transformation of unactivated alkenes, such as aliphatic alkenes, remains challenging.To overcome this obstacle, we have recently disclosed the strategy of intramolecular distal functional group migration (FGM), which has been efficiently applied in radical difunctionalization of unactivated alkenes. A portfolio of functional groups, such as cyano, heteroaryl, oximino, formyl, and alkynyl groups, showcase the excellent migratory aptitude. Mechanistically, after the addition of an extrinsic radical to the alkene, the newly formed active alkyl radical is rapidly captured by the intramolecular migratory group to generate a cyclic intermediate. Subsequent cleavage of the cyclic C-C bond of the intermediate leads to the functionalized product through the FGM process. Based on the strategy of FGM, a set of elusive difunctionalizations of unactivated alkenes have been accomplished (Part A).Alongside this research, an upgraded highly efficient synthetic strategy, "dock-migration," is created for intermolecular difunctionalization of alkenes. A diversity of sulfone-based dual-function reagents are developed. The intermolecular transformation is initiated by docking the dual-function reagent to the alkene, followed by intramolecular migration of the functional group. Compared to the original FGM protocol, the scope of alkenes is significantly extended from the strategically placed tertiary alcohol-substituted alkenes to general alkenes. Both activated and unactivated alkenes are well tolerated. By this approach, radical-mediated fluoroalkylheteroarylation, fluoroalkylalkynylation, and alkylation of alkenes have been achieved (Part B).Direct elaboration of C-H bonds into the targeted functional groups represents one of the most ideal and straightforward methods for molecular functionalization. The FGM strategy proves to be an ingenious tool for radical-mediated functionalization of remote unactivated C(sp3)-H bonds. Based on the FGM process, we have accomplished: (a) remote C(sp3)-H heteroarylation and cyanation of unprotected alcohols via the cascade of alkoxy radical-enabled hydrogen atom transfer (HAT) and intramolecular functional group (e.g., heteroaryl, cyano) migration, and (b) distal C(sp3)-H vinylation of propargylic alcohols through consecutive alkenyl radical-promoted HAT process and subsequent alkenyl migration (Part C).
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
Yan J, Cheo HW, Teo WK, Shi X, Wu H, Idres SB, Deng LW, Wu J. A Radical Smiles Rearrangement Promoted by Neutral Eosin Y as a Direct Hydrogen Atom Transfer Photocatalyst. J Am Chem Soc 2020; 142:11357-11362. [DOI: 10.1021/jacs.0c02052] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianming Yan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Han Wen Cheo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Kiat Teo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiangcheng Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hui Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 8 Medical Drive, Singapore 117597, Singapore
| | - Shabana Binte Idres
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 8 Medical Drive, Singapore 117597, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 8 Medical Drive, Singapore 117597, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
24
|
Xiong Z, Zhang F, Yu Y, Tan Z, Zhu G. AIBN-Induced Remote Trifluoromethyl-Alkynylation of Thioalkynes. Org Lett 2020; 22:4088-4092. [PMID: 32427485 DOI: 10.1021/acs.orglett.0c01147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel α,α'-azobis(isobutyronitrile) (AIBN)-induced remote trifluoromethyl-alkynylation of thioalkynes with alkynyl triflones as both the trifluoromethyl and alkyne sources is described. Structurally diverse trifluoromethylated (Z)-enynes can be constructed with full control of regio-, stereo-, and site-selectivity, which serves as a highly selective method for the rapid construction of trifluoromethylated molecules.
Collapse
Affiliation(s)
- Zhimin Xiong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P.R. China
| | - Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P.R. China
| | - Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P.R. China
| |
Collapse
|
25
|
Shang T, Zhang J, Zhang Y, Zhang F, Li XS, Zhu G. Photocatalytic Remote Oxyfluoroalkylation of Heteroalkynes: Regio-, Stereo-, and Site-Selective Access to Complex Fluoroalkylated (Z)-Alkenes. Org Lett 2020; 22:3667-3672. [DOI: 10.1021/acs.orglett.0c01163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianbo Shang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Junhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Xin-Sheng Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
26
|
Liu Z, Li M, Deng G, Wei W, Feng P, Zi Q, Li T, Zhang H, Yang X, Walsh PJ. Transition-metal-free C(sp 3)-H/C(sp 3)-H dehydrogenative coupling of saturated heterocycles with N-benzyl imines. Chem Sci 2020; 11:7619-7625. [PMID: 34094139 PMCID: PMC8152681 DOI: 10.1039/d0sc00031k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
A unique C(sp3)-H/C(sp3)-H dehydrocoupling of N-benzylimines with saturated heterocycles is described. Using super electron donor (SED) 2-azaallyl anions and aryl iodides as electron acceptors, single-electron-transfer (SET) generates an aryl radical. Hydrogen atom transfer (HAT) from saturated heterocycles or toluenes to the aryl radical generates alkyl radicals or benzylic radicals, respectively. The newly formed alkyl radicals and benzylic radicals couple with the 2-azaallyl radicals with formation of new C-C bonds. Experimental evidence supports the key hydrogen-abstraction by the aryl radical, which determines the chemoselectivity of the radical-radical coupling reaction. It is noteworthy that this procedure avoids the use of traditional strong oxidants and transition metals.
Collapse
Affiliation(s)
- Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wanshi Wei
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Ping Feng
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Quanxing Zi
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Tiantian Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Department of Soil and Water Science, University of Florida 2181 McCarty Hall A Gainesville FL 32611-0290 USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| |
Collapse
|
27
|
Liu C, Jiang Q, Lin Y, Fang Z, Guo K. C- to N-Center Remote Heteroaryl Migration via Electrochemical Initiation of N Radical by Organic Catalyst. Org Lett 2020; 22:795-799. [PMID: 31922422 DOI: 10.1021/acs.orglett.9b04141] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein an exogenous oxidant- and metal-free electrochemical heteroaryl migration triggered by N radicals to construct new N-C bonds was developed. This methodology features a high atom economy and utilization rate of energy, and it is insensitive to water and air. Moreover, a user-friendly undivided cell was employed. The use of an organic catalyst makes it more efficient, green, and practical.
Collapse
Affiliation(s)
- Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Qiang Jiang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yang Lin
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China.,State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
28
|
Liao Y, Ran Y, Liu G, Liu P, Liu X. Transition-metal-free radical relay cyclization of vinyl azides with 1,4-dihydropyridines involving a 1,5-hydrogen-atom transfer: access to α-tetralone scaffolds. Org Chem Front 2020. [DOI: 10.1039/d0qo01042a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The remote C(sp3)–H functionalization enabled by a radical-mediated 1,5-hydrogen-atom transfer (HAT) process using vinyl azides and 1,4-dihydropyridines as precursors has been described.
Collapse
Affiliation(s)
- Yangzhen Liao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Yu Ran
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Guijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| |
Collapse
|
29
|
Niu T, Yang S, Wu X, Zhu C. Remote C(sp3)–H vinylation via radical-mediated consecutive fission of C–H and C–C bonds. Org Chem Front 2020. [DOI: 10.1039/d0qo00952k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein is a radical-mediated vinylation of the remote C(sp3)–H bonds of propargylic alcohols.
Collapse
Affiliation(s)
- Tao Niu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
30
|
Chen H, Yu S. Remote C–C bond formationviavisible light photoredox-catalyzed intramolecular hydrogen atom transfer. Org Biomol Chem 2020; 18:4519-4532. [DOI: 10.1039/d0ob00854k] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Visible light photoredox catalysis combined with intramolecular hydrogen atom transfer (HAT) can serve as a unique tool for achieving remote C–C bond formation. Recent advances in photoredox-catalyzed remote C–C bond formation are summarized.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
31
|
Wang F, Zhang X, He Y, Fan X. Synthesis of β-Dicarbonylated Tetrahydropiperidines via Direct Oxidative Cross-Coupling between Different C(sp3)–H Bonds. J Org Chem 2019; 85:2220-2230. [DOI: 10.1021/acs.joc.9b02924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fang Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
32
|
Talasila DS, Queensen MJ, Barnes-Flaspoler M, Jurkowski K, Stephenson E, Rabus JM, Bauer EB. Ferrocenium Cations as Catalysts for the Etherification of Cyclopropyl-Substituted Propargylic Alcohols: Ene-yne Formation and Mechanistic Insights. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Deva Saroja Talasila
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Matthew J. Queensen
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Michael Barnes-Flaspoler
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Kellsie Jurkowski
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Evan Stephenson
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Jordan M. Rabus
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| | - Eike B. Bauer
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard 63121 St. Louis MO USA
| |
Collapse
|
33
|
|
34
|
Meng K, Sun Y, Zhang J, Zhang K, Ji X, Ding L, Zhong G. Iridium-Catalyzed Cross-Coupling Reactions of Alkenes by Hydrogen Transfer. Org Lett 2019; 21:8219-8224. [PMID: 31589451 DOI: 10.1021/acs.orglett.9b02935] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of Ru-, Rh-, or Pd-catalyzed vinylic C-H/C-H cross-coupling reactions of olefins have been demonstrated to provide 1,3-dienes, using a quantitative amount of metal oxidants. Although transfer hydrogenation and C-H alkenylation are two important areas that evolved independently, we herein report the first iridium-catalyzed cross-coupling reactions of alkenes by integration of directed C(alkenyl)-H alkenylation and transfer hydrogenation to obviate the usage of a metal oxidant, employing a hydrogen acceptor such as inexpensive chloranil.
Collapse
Affiliation(s)
- Keke Meng
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Yaling Sun
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Kaiyun Zhang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Xiaohui Ji
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Liyuan Ding
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| |
Collapse
|
35
|
Regioselective introduction of vinyl trifluoromethylthioether to remote unactivated C(sp3)—H bonds via radical translocation cascade. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9527-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Wu X, Zhu C. Recent advances in alkoxy radical-promoted C–C and C–H bond functionalization starting from free alcohols. Chem Commun (Camb) 2019; 55:9747-9756. [DOI: 10.1039/c9cc04785a] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article summarizes our recent achievements in alkoxy radical-promoted C–C and C–H bond functionalization starting from free alcohols.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|