1
|
Zhan YF, Chen JM, Sheng XX, Qiu CY, Jiang Y, Yang S, Chen M. Photoinduced copper catalyzed nitrogen-to-alkyl radical relay Sonogashira-type coupling of o-alkylbenzamides with alkynes. Chem Commun (Camb) 2024; 60:7906-7909. [PMID: 38979947 DOI: 10.1039/d4cc02861a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This report describes a copper-catalyzed, photoinduced N-to-alkyl radical relay Sonogashira-type reactions at benzylic sites in o-alkylbenzamides with alkynes. The process employs an N-to-alkyl radical mechanism, initiated through the copper-catalyzed reductive generation of nitrogen radicals. Radical translocation is facilitated by a 1,5-hydrogen atom transfer (1,5-HAT), leading to the formation of translocated carbon radicals. These radicals are then subjected to copper-catalyzed alkynylation. The methodology exhibits broad sub-strate scope and applicability to the synthesis of complex natural products.
Collapse
Affiliation(s)
- Yan-Fang Zhan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Chang-zhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Dai NN, Lu YJ, Wu ZQ, Zhou Y, Tong Y, Tang K, Li Q, Zhang JQ, Liu Y, Wei WT. Copper-Catalyzed Radical Relay 1,3-Carbocarbonylation across Two Distinct C═C Bonds. Org Lett 2024; 26:3014-3019. [PMID: 38547326 DOI: 10.1021/acs.orglett.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The radical relay provides an effective paradigm for intermolecular assembly to achieve functionalization across remote chemical bonds. Herein, we report the first radical relay 1,3-carbocarbonylation of α-carbonyl alkyl bromides across two separate C═C bonds. The reaction is highly chemo- and regioselective, with two C(sp3)-C(sp3) bonds and one C═O bond formed in a single orchestrated operation. In addition, the synthesis method under mild conditions and using inexpensive copper as the catalyst allows facile access to structurally diverse 1,3-carbocarbonylation products. The plausible mechanism is investigated through a series of control experiments, including radical trapping, radical clock experiments, critical intermediate trapping, and 18O labeling experiment.
Collapse
Affiliation(s)
- Nan-Nan Dai
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Yue-Jiao Lu
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Zhong-Qi Wu
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Ying Tong
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yu Liu
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Health Science Center, Ningbo University, Zhejiang 315211, China
| |
Collapse
|
3
|
Chen Y, Zhang S, Li T, Ma Q, Yuan Y, Jia X. Oxidants Controlled C-H Bond Functionalization of N-Aryltetrahydroisoquinolines: The Construction of the Quaternary Carbon Center and Cleavage of the C-N Bond. Chemistry 2024; 30:e202303151. [PMID: 37875461 DOI: 10.1002/chem.202303151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Initiated by triarylamine radical cation salt (TBPA), the direct C-H bond functionalization of α-N-aryltetrahydroisoquinoline esters was smoothly realized, giving a series of α-hydroxylated derivatives with a quaternary carbon center in good yields. Differently, in the presence of tert-butyl nitrite (TBN), the C-N single bond was cleaved to keto esters. The mechanistic study revealed that these reactions were mediated by a similar mechanism, in which the N-nitrosation might provide a driving force to the C-N bond cleavage.
Collapse
Affiliation(s)
- Yuqin Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
4
|
Ouyang JY, Shen FF, Zhao HQ, Chen JJ, Wen ZD, Jiang HM, Qin JH, Sun Q, Li JH, Ouyang XH. Aryldiazonium Salt-Triggered [2 + 2 + 1] Heteroannulation of Indoles by an Arylhydrazone Radical-Relayed 1,5-Hydrogen Atom Transfer. Org Lett 2023; 25:6549-6554. [PMID: 37615297 DOI: 10.1021/acs.orglett.3c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An unprecedented three-component [2 + 2 + 1] annulation cascade of indoles with aryldiazonium salts and polyhalomethanes or acetone is presented by dual hydrogen atom transfer (HAT) and C-H functionalization. By employing readily accessible aryldiazonium salts as the radical initiators and electrophiles and polyhalomethanes and acetone as the C1 units, this method unprecedentedly constructs a pyrazole ring on an indole ring skeleton through the formation of two C-N bonds and a C-C bond in a single reaction.
Collapse
Affiliation(s)
- Jun-Yao Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Fang-Fang Shen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Han-Qing Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jia-Jie Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhu-Dong Wen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
5
|
Simons RT, Nandakumar M, Kwon K, Ayer SK, Venneti NM, Roizen JL. Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C-H Bonds. J Am Chem Soc 2023; 145:10.1021/jacs.2c13409. [PMID: 36780585 PMCID: PMC10423309 DOI: 10.1021/jacs.2c13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Site-selective functionalization of unactivated C(sp3)-H centers is challenging because of the ubiquity and strength of alkyl C-H bonds. Herein, we disclose a position-selective C(sp3)-C(sp2) cross-coupling reaction. This process engages C(sp3)-H bonds and aryl bromides, utilizing catalytic quantities of a photoredox-capable molecule and a nickel precatalyst. Using this technology, selective C-H functionalization arises owing to a 1,6-hydrogen atom transfer (HAT) process that is guided by a pendant alcohol-anchored sulfamate ester. These transformations proceed directly from N-H bonds, in contrast to previous directed, radical-mediated, C-H arylation processes, which have relied on prior oxidation of the reactive nitrogen center in reactions with nucleophilic arenes. Moreover, these conditions promote arylation at secondary centers in good yields with excellent selectivity.
Collapse
Affiliation(s)
- R. Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Suraj K. Ayer
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Naresh M. Venneti
- Wayne State University, Department of Chemistry, Detroit, MI 48202, United States
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| |
Collapse
|
6
|
Yan XX, Niu C, Yin ZC, Lu WQ, Wang GW. Anionic alkene-azide cycloaddition (AAAC) strategy toward electrosynthesis of multifunctionalized [60]fullerene derivatives and further applications. Sci Bull (Beijing) 2022; 67:2406-2410. [PMID: 36566062 DOI: 10.1016/j.scib.2022.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Affiliation(s)
- Xing-Xing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chuang Niu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Chun Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Qiang Lu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Guan-Wu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Ding H, Zhang S, Sun Z, Ma Q, Li Y, Yuan Y, Jia X. Tris(4-bromophenyl)aminium Hexachloroantimonate as a "Waste-Utilized"-Type Initiator-Promoted C-H Chlorination via C-H Activation Relay: Synthesis of Chlorinated Pyrroles. J Org Chem 2022; 87:15139-15151. [PMID: 36398528 DOI: 10.1021/acs.joc.2c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using tris(4-bromophenyl)aminium hexachloroantimonate as a "waste-utilized"-type initiator, the aerobic oxidation of the sp3 C-H bond of proline esters was realized via C-H activation relay, giving a series of halogenated pyrroles in high yields. The mechanistic study revealed that the counterion, SbCl6-, was involved in the radical chlorination process, which provides a new way to understand the role of the counterions.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yuemei Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
8
|
Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 2022; 6:782-805. [PMID: 37118094 DOI: 10.1038/s41570-022-00422-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C-H and C-C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C-H and C-C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.
Collapse
|
9
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
10
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
12
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Zhong LJ, Lv GF, Ouyang XH, Li Y, Li JH. Copper-Catalyzed Fluoroamide-Directed Remote Benzylic C-H Olefination: Facile Access to Internal Alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00822j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general, site-selective copper-catalyzed fluoroamide-directed remote benzylic C-H olefination of N-fluoroamides with terminal alkenes for producing internal alkenes is disclosed. This protocol proceeds via a hybrid Cu-radical mechanism, which synergistically...
Collapse
|
14
|
Zhong LJ, Xiong ZQ, Ouyang XH, Li Y, Song RJ, Sun Q, Lu X, Li JH. Intermolecular 1,2-Difunctionalization of Alkenes Enabled by Fluoroamide-Directed Remote Benzyl C(sp 3)-H Functionalization. J Am Chem Soc 2021; 144:339-348. [PMID: 34935377 DOI: 10.1021/jacs.1c10053] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A copper-catalyzed remote benzylic C-H functionalization strategy enabling 1,2-difunctionalization of alkenes with 2-methylbenzeneamides and nucleophiles, including alcohols, indoles, pyrroles, and the intrinsic amino groups, is reported, which is characterized by its redox-neutral conditions, exquisite site-selectivity, broad substrate scope, and wide utilizations of late-stage modifying bioactive molecules. This reaction proceeds through nitrogen-centered radical generation, hydrogen atom transfer, benzylic radical addition across the alkenes, single-electron oxidation, and carbocation electrophilic course cascades. While using external nucleophiles manipulates three-component alkene alkylalkoxylation and alkyl-heteroarylation with 2-methylbenzeneamides to access dialkyl ethers, 3-alkylindoles, and 3-alkylpyrroles, omitting the external nucleophiles results in two-component alkylamidation ([5+2] annulation) of alkenes with 2-methylbenzeneamides to benzo-[f][1,2]thiazepine 1,1-dioxides.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
15
|
Deng Y, Yang T, Wang H, Yang C, Cheng L, Yin SF, Kambe N, Qiu R. Recent Progress on Photocatalytic Synthesis of Ester Derivatives and Reaction Mechanisms. Top Curr Chem (Cham) 2021; 379:42. [PMID: 34668085 DOI: 10.1007/s41061-021-00355-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
Esters and their derivatives are distributed widely in natural products, pharmaceuticals, fine chemicals and other fields. Esters are important building blocks in pharmaceuticals such as clopidogrel, methylphenidate, fenofibrate, travoprost, prasugrel, oseltamivir, eszopiclone and fluticasone. Therefore, esterification reaction becomes more and more popular in the photochemical field. In this review, we highlight three types of reactions to synthesize esters using photochemical strategies. The reaction mechanisms involve mainly single electron transfer, energy transfer or other radical procedures.
Collapse
Affiliation(s)
- Yiqiang Deng
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hui Wang
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Chong Yang
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Lihua Cheng
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Renhua Qiu
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
16
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
17
|
Gant Kanegusuku AL, Roizen JL. Recent Advances in Photoredox-Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed Engl 2021; 60:21116-21149. [PMID: 33629454 PMCID: PMC8382814 DOI: 10.1002/anie.202016666] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/18/2022]
Abstract
Photomediated Giese reactions are at the forefront of radical chemistry, much like the classical tin-mediated Giese reactions were nearly forty years ago. With the global recognition of organometallic photocatalysts for the mild and tunable generation of carbon-centered radicals, chemists have developed a torrent of strategies to form previously inaccessible radical intermediates that are capable of engaging in intermolecular conjugate addition reactions. This Review summarizes advances in photoredox-mediated Giese reactions since 2013, with a focus on the breadth of methods that provide access to crucial carbon-centered radical intermediates that can engage in radical conjugate addition processes.
Collapse
Affiliation(s)
| | - Jennifer L Roizen
- Department of Chemistry, Duke University, Box 90346, Durham, NC, 27708-0354, USA
| |
Collapse
|
18
|
Li JZ, Zhang WK, Ge GP, Zheng H, Wei WT. Recent progress in the radical α-C(sp 3)-H functionalization of ketones. Org Biomol Chem 2021; 19:7333-7347. [PMID: 34612358 DOI: 10.1039/d1ob01408k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direct use structurally simple ketones as α-ketone radical sources for α-C(sp3)-H functionalization is a sustainable and powerful approach for constructing complex and multifunctional chemical scaffolds with diverse applications. The reactions of α-ketone radicals with alkenes, alkynes, enynes, imides, and imidazo[1,2-a]pyridines have broadened the structural diversity and complexity of ketones. Through chosen illustrative examples, we outline the recent progress in the development of methods that enable the radical α-C(sp3)-H functionalization of ketones, with an emphasis on radical initiation systems and possible mechanisms of the transformations. The application of these strategies is illustrated by the synthesis of several biologically active molecules and drug molecules. Further subdivision is based on substrate type and reaction type.
Collapse
Affiliation(s)
- Jiao-Zhe Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | | | | | | | | |
Collapse
|
19
|
Gant Kanegusuku AL, Roizen JL. Recent Advances in Photoredox‐Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jennifer L. Roizen
- Department of Chemistry Duke University Box 90346 Durham NC 27708-0354 USA
| |
Collapse
|
20
|
Li Y, Miyamoto S, Torigoe T, Kuninobu Y. Regioselective C(sp 3)-H alkylation of a fructopyranose derivative by 1,6-HAT. Org Biomol Chem 2021; 19:3124-3127. [PMID: 33885565 DOI: 10.1039/d1ob00326g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective C(sp3)-H alkylation of a fructopyranose derivative using electron-deficient alkenes as alkylation reagents was achieved. The reaction proceeded via 1,6-hydrogen atom transfer under photoredox iridium catalysis. Several functional groups were introduced into the fructopyranose derivative.
Collapse
Affiliation(s)
- Yanru Li
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | | | | | | |
Collapse
|
21
|
Yuan Y, Zhang S, Sun Z, Su Y, Ma Q, Yuan Y, Jia X. Oxidation of the inert sp 3 C-H bonds of tetrahydroisoquinolines through C-H activation relay (CHAR): construction of functionalized isoquinolin-1-ones. Chem Commun (Camb) 2021; 57:3347-3350. [PMID: 33659968 DOI: 10.1039/d1cc00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A TBN/O2-initiated oxidation of the relatively inert 3,4-C-H bonds of THIQs was accomplished, in which the existence of an α-phosphoric ester group is crucial to enable dioxygen trapping and intramolecular HAT (C-H activation relay, CHAR), realizing the synthesis of a series of isoquinolin-1-ones in high yields. The mechanistic study confirmed that the formation of the 3,4-double bond is mediated by the CHAR process. This work provides a new strategy to achieve remote C-H bond activation.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Griggs SD, Martin-Roncero A, Nelson A, Marsden SP. Regioselective side-chain amination of 2-alkyl azacycles by radical translocation: total synthesis of tetraponerine T8. Chem Commun (Camb) 2021; 57:919-922. [PMID: 33393538 DOI: 10.1039/d0cc07625b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regioselective γ-C-H amination of the side-chain of saturated 2-alkyl nitrogen heterocycles is reported, proceeding through a sulfamide-directed 1,6-radical translocation. The practicality of this rapid access to 1,3-diamines is highlighted in a short synthesis of the alkaloid tetraponerine T8 and non-natural analogues.
Collapse
Affiliation(s)
- Samuel D Griggs
- Department of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Adam Nelson
- Department of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
23
|
Ma ZY, Li M, Guo LN, Liu L, Wang D, Duan XH. Sulfonamide as Photoinduced Hydrogen-Atom Transfer Catalyst for Regioselective Alkylation of C(sp 3)-H Bonds Adjacent to Heteroatoms. Org Lett 2020; 23:474-479. [PMID: 33373258 DOI: 10.1021/acs.orglett.0c03992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on the DFT calculations, the sulfonamide was explored as an efficient hydrogen-atom transfer catalyst for the C(sp3)-H alkylation. The combination of a metal-free photoredox catalyst and a sulfonamide catalyst enables highly regioselective alkylation of the C-H bonds adjacent to heteroatoms, which features broad substrate scope and excellent functional group compatibility. Remarkably, the sulfonamide catalyst was also applicable to the C(sp3)-C(sp3) couplings through the merger of photoredox, nickel, and HAT catalysis.
Collapse
Affiliation(s)
- Zhi-Yong Ma
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Mengyang Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Dongdong Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
24
|
Zhong LJ, Li Y, An DL, Li JH. Heteroannulation of N-Fluoro-N-alkylsulfonamides with Terminal Alkynes via Remote C(sp3)–H Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03853] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Long-Jin Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - De-Lie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Zhu Y, Wang J, Wu D, Yu W. Visible‐Light‐Driven Remote C−H Chlorination of Aliphatic Sulfonamides with Sodium Hypochlorite. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanshuo Zhu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Juan‐Juan Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Danhua Wu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| |
Collapse
|
26
|
Kumar G, Pradhan S, Chatterjee I. N‐Centered Radical Directed Remote C−H Bond Functionalization via Hydrogen Atom Transfer. Chem Asian J 2020; 15:651-672. [DOI: 10.1002/asia.201901744] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/16/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gautam Kumar
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road, Rupnagar Punjab 140001 India
| | - Suman Pradhan
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road, Rupnagar Punjab 140001 India
| | - Indranil Chatterjee
- Department of ChemistryIndian Institute of Technology Ropar Nangal Road, Rupnagar Punjab 140001 India
| |
Collapse
|
27
|
Chen H, Yu S. Remote C–C bond formationviavisible light photoredox-catalyzed intramolecular hydrogen atom transfer. Org Biomol Chem 2020; 18:4519-4532. [DOI: 10.1039/d0ob00854k] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Visible light photoredox catalysis combined with intramolecular hydrogen atom transfer (HAT) can serve as a unique tool for achieving remote C–C bond formation. Recent advances in photoredox-catalyzed remote C–C bond formation are summarized.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
28
|
Short MA, Blackburn JM, Roizen JL. Modifying Positional Selectivity in C-H Functionalization Reactions with Nitrogen-Centered Radicals: Generalizable Approaches to 1,6-Hydrogen-Atom Transfer Processes. Synlett 2020; 31:102-116. [PMID: 33986583 PMCID: PMC8115226 DOI: 10.1055/s-0039-1691501] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitrogen-centered radicals are powerful reaction intermediates owing in part to their ability to guide position-selective C(sp3)-H functionalization reactions. Typically, these reactive species dictate the site of functionalization by preferentially engaging in 1,5-hydrogen-atom transfer (1,5-HAT) processes. Broadly relevant approaches to alter the site-selectivity of HAT pathways would be valuable because they could be paired with a variety of tactics to install diverse functional groups. Yet, until recently, there have been no generalizable strategies to modify the position-selectivity observed in these HAT processes. This Synpacts article reviews transformations in which nitrogen-centered radicals preferentially react through 1,6-HAT pathways. Specific attention will be focused on strategies that employ alcohol- and amine-anchored sulfamate esters and sulfamides as templates to achieve otherwise rare γ-selective functionalization reactions.
Collapse
Affiliation(s)
- Melanie A. Short
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina, 27708-0354, USA
| | - J. Miles Blackburn
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina, 27708-0354, USA
| | - Jennifer L. Roizen
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina, 27708-0354, USA
| |
Collapse
|
29
|
Deng Z, Li GX, He G, Chen G. Photoredox-Mediated Remote C(sp 3)-H Heteroarylation of N-Alkyl Sulfonamides. J Org Chem 2019; 84:15777-15787. [PMID: 31804068 DOI: 10.1021/acs.joc.9b02502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Minisci-type δ-selective C(sp3)-H heteroarylation of sulfonyl-protected primary aliphatic amines with N-heteroarenes under photoredox-catalyzed conditions was developed. The reaction typically uses a slight excess of amine reactant. The use of benziodoxole acetate (BI-OAc) oxidant and hexafluoroisopropanol solvent is critical to achieve high yield. Besides methylene C-H bonds, heteroarylation reactions of δ methyl C-H bonds also worked under more forced conditions. The reactions show a broad scope for both amine and N-heteroarene substrates, offering a straightforward method for synthesis of complex δ-heteroarylalkylmines from simple precursors.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Guo-Xing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
30
|
Qin Y, Han Y, Tang Y, Wei J, Yang M. A general method for site-selective Csp 3-S bond formation via cooperative catalysis. Chem Sci 2019; 11:1276-1282. [PMID: 34123252 PMCID: PMC8148391 DOI: 10.1039/c9sc04169a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herein, we report a copper-catalysed site-selective thiolation of Csp3-H bonds of aliphatic amines. The method features a broad substrate scope and good functional group compatibility. Primary, secondary, and tertiary C-H bonds can be converted into C-S bonds with a high efficiency. The late-stage modification of biologically active compounds by this method was also demonstrated. Furthermore, the one-pot preparation of pyrrolidine or piperidine compounds via a domino process was achieved.
Collapse
Affiliation(s)
- Yuman Qin
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Yujie Han
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Yongzhen Tang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Junfa Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University 620 West Chang'an Ave Xi'an 710119 China
| |
Collapse
|
31
|
Zeng X, Yan W, Paeth M, Zacate SB, Hong PH, Wang Y, Yang D, Yang K, Yan T, Song C, Cao Z, Cheng MJ, Liu W. Copper-Catalyzed, Chloroamide-Directed Benzylic C–H Difluoromethylation. J Am Chem Soc 2019; 141:19941-19949. [DOI: 10.1021/jacs.9b11549] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Zeng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400, P. R. China
| | - Wenhao Yan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Matthew Paeth
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Samson B. Zacate
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Pei-Hsun Hong
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yufei Wang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Dongqi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tao Yan
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400, P. R. China
| | - Chang Song
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Technology Co., Ltd, Beijing, 101400, P. R. China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
32
|
Short MA, Shehata MF, Sanders MA, Roizen JL. Sulfamides direct radical-mediated chlorination of aliphatic C-H bonds. Chem Sci 2019; 11:217-223. [PMID: 34040715 PMCID: PMC8132995 DOI: 10.1039/c9sc03428e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Given the prevalence of aliphatic amines in bioactive small molecules, amine derivatives are opportune as directing groups. Herein, sulfamides serve as amine surrogates to guide intermolecular chlorine-transfer at γ-C(sp3) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage preferentially in otherwise rare 1,6-hydrogen-atom transfer (HAT) processes through seven-membered transition states. The site-selectivity of C–H abstraction can be modulated by adjusting the steric and electronic properties of the sulfamide nitrogen substituents, an ability that has not been demonstrated with other substrate classes. The disclosed reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp3)–H bonds efficiently. Amine-anchored sulfamides direct radical-mediated chlorination of aliphatic C–H bonds. The site of C–H abstraction can be modulated by varying the sulfamide nitrogen substituents, a feature that has not been demonstrated with other substrate classes.![]()
Collapse
Affiliation(s)
- Melanie A Short
- Duke University, Department of Chemistry Box 90346 Durham North Carolina 27709-0354 USA
| | - Mina F Shehata
- Duke University, Department of Chemistry Box 90346 Durham North Carolina 27709-0354 USA
| | - Matthew A Sanders
- Duke University, Department of Chemistry Box 90346 Durham North Carolina 27709-0354 USA
| | - Jennifer L Roizen
- Duke University, Department of Chemistry Box 90346 Durham North Carolina 27709-0354 USA
| |
Collapse
|
33
|
Blackburn JM, Kanegusuku ALG, Scott GE, Roizen JL. Photochemically-Mediated, Nickel-Catalyzed Synthesis of N-(Hetero)aryl Sulfamate Esters. Org Lett 2019; 21:7049-7054. [PMID: 31436104 PMCID: PMC7241445 DOI: 10.1021/acs.orglett.9b02621] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general method is described for the coupling of (hetero)aryl bromides with O-alkyl sulfamate esters. The protocol relies on catalytic amounts of nickel and photoexcitable iridium complexes and proceeds under visible light irradiation at ambient temperature. This technology engages a broad range of simple and complex O-alkyl sulfamate ester substrates under mild conditions. Furthermore, it is possible to avoid undesirable N-alkylation, which was found to plague palladium-based protocols for N-arylation of O-alkyl sulfamate esters. These investigations represent the first use of sulfamate esters as nucleophiles in transition metal-catalyzed C-N coupling processes.
Collapse
Affiliation(s)
- J. Miles Blackburn
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708-0354
| | | | - Georgia E. Scott
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708-0354
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708-0354
| |
Collapse
|
34
|
Shu W, Zhang H, Huang Y. γ-Alkylation of Alcohols Enabled by Visible-Light Induced 1,6-Hydrogen Atom Transfer. Org Lett 2019; 21:6107-6111. [PMID: 31339735 DOI: 10.1021/acs.orglett.9b02255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-selective remote alkylation of alcohol is attractive but challenging in organic synthesis. Herein, we report a novel visible-light mediated γ-alkylation of alcohol derivatives via the formation of Csp3-Csp3 bond through Csp3-H bond functionalization under mild conditions. The use of sulfamate esters enables the directed, otherwise rare 1,6-HAT to generate γ-selective C-centered radical, which is complementary to δ-selective 1,5-HAT of alcohols. This redox-neutral protocol provides a general and operationally simple method to access γ-alkylated alcohols.
Collapse
Affiliation(s)
- Wei Shu
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 , Shenzhen , Guangdong , China.,State Key Laboratory of Elemento-Organic Chemistry , Nankai University , 300071 , Tianjin , China
| | - Hui Zhang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 , Shenzhen , Guangdong , China
| | - Yan Huang
- Department of Chemistry and Shenzhen Grubbs Institute , Southern University of Science and Technology , 518055 , Shenzhen , Guangdong , China
| |
Collapse
|
35
|
Kanegusuku ALG, Castanheiro T, Ayer SK, Roizen JL. Sulfamyl Radicals Direct Photoredox-Mediated Giese Reactions at Unactivated C(3)-H Bonds. Org Lett 2019; 21:6089-6095. [PMID: 31313933 DOI: 10.1021/acs.orglett.9b02234] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alcohol-anchored sulfamate esters guide the alkylation of tertiary and secondary aliphatic C(3)-H bonds. The transformation proceeds directly from N-H bonds with a catalytic oxidant, a contrast to prior methods which have required preoxidation of the reactive nitrogen center, or employed stoichiometric amounts of strong oxidants to obtain the sulfamyl radical. These sulfamyl radicals template otherwise rare 1,6-hydrogen-atom transfer (HAT) processes via seven-membered ring transition states to enable C(3)-H functionalization during Giese reactions.
Collapse
Affiliation(s)
- Anastasia L G Kanegusuku
- Duke University , Department of Chemistry , Box 90346, Durham , North Carolina 27708-0354 , United States
| | - Thomas Castanheiro
- Duke University , Department of Chemistry , Box 90346, Durham , North Carolina 27708-0354 , United States
| | - Suraj K Ayer
- Duke University , Department of Chemistry , Box 90346, Durham , North Carolina 27708-0354 , United States
| | - Jennifer L Roizen
- Duke University , Department of Chemistry , Box 90346, Durham , North Carolina 27708-0354 , United States
| |
Collapse
|