1
|
Wang H, Xun SS, Yu CB, Zhou YG. Palladium-catalyzed asymmetric hydrogenation of lactones under base-free conditions. Chem Sci 2024; 15:11038-11042. [PMID: 39027297 PMCID: PMC11253110 DOI: 10.1039/d4sc01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Asymmetric hydrogenation of esters through homogeneous catalysis is a significantly important transformation in organic synthesis. The systems developed so far mainly focused on chiral iridium and ruthenium catalysts, which required a base to facilitate the activity. Herein, we present a palladium-catalyzed asymmetric hydrogenation of lactones under base-free conditions through dynamic kinetic resolution and kinetic resolution. The reaction exhibits high enantioselectivity and excellent functional group tolerance. Remarkably, the hydrogenation proceeds smoothly at the gram scale, and the products can be transformed into several chiral potential building blocks without loss of optical purity. This work provides a new strategy for asymmetric hydrogenation of esters under base-free conditions.
Collapse
Affiliation(s)
- Han Wang
- School of Chemistry, Dalian University of Technology Dalian 116033 P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Shan-Shan Xun
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
2
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Wei L, Li J, Zhao Y, Zhou Q, Wei Z, Chen Y, Zhang X, Yang X. Chiral Phosphoric Acid Catalyzed Asymmetric Hydrolysis of Biaryl Oxazepines for the Synthesis of Axially Chiral Biaryl Amino Phenol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202306864. [PMID: 37338333 DOI: 10.1002/anie.202306864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The development of catalytic asymmetric reaction with water as the reactant is challenging due to the reactivity- and stereoselectivity-control issues resulted from the low nucleophilicity and the small size of water. We disclose herein a chiral phosphoric acid (CPA) catalyzed atroposelective ring-opening reaction of biaryl oxazepines with water. A series of biaryl oxazepines undergo the CPA catalyzed asymmetric hydrolysis in a highly enantioselective manner. The key for the success of this reaction is the use of a new SPINOL-derived CPA catalyst and the high reactivity of biaryl oxazepine substrates towards water under acidic conditions. Density functional theory calculations suggest that the reaction proceeds via a dynamic kinetic resolution pathway and the CPA catalyzed addition of water to the imine group is both enantio- and rate-determining.
Collapse
Affiliation(s)
- Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuhang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
4
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
5
|
Battisti UM, Monjas L, Akladios F, Matic J, Andresen E, Nagel CH, Hagkvist M, Håversen L, Kim W, Uhlen M, Borén J, Mardinoğlu A, Grøtli M. Exploration of Novel Urolithin C Derivatives as Non-Competitive Inhibitors of Liver Pyruvate Kinase. Pharmaceuticals (Basel) 2023; 16:ph16050668. [PMID: 37242451 DOI: 10.3390/ph16050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The inhibition of liver pyruvate kinase could be beneficial to halt or reverse non-alcoholic fatty liver disease (NAFLD), a progressive accumulation of fat in the liver that can lead eventually to cirrhosis. Recently, urolithin C has been reported as a new scaffold for the development of allosteric inhibitors of liver pyruvate kinase (PKL). In this work, a comprehensive structure-activity analysis of urolithin C was carried out. More than 50 analogues were synthesized and tested regarding the chemical features responsible for the desired activity. These data could pave the way to the development of more potent and selective PKL allosteric inhibitors.
Collapse
Affiliation(s)
- Umberto Maria Battisti
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Leticia Monjas
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Fady Akladios
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Josipa Matic
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Eric Andresen
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Carolin H Nagel
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Malin Hagkvist
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 65 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
6
|
Deng YH, Qin L, Li R, Wang YB, Zhu JY, Fu JY, Zhang CB, Zhao L. Construction of an Axially Chiral Fluorene Nitrile-Based Framework via Benzannulation of Indene Diene with Benzoylacetonitrile. Org Lett 2022; 24:8277-8282. [DOI: 10.1021/acs.orglett.2c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yi-Hang Deng
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Lei Qin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ran Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun-Yan Zhu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Ji-Ya Fu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Chuan-Bao Zhang
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Luo Z, Wang W, Tang T, Zhang S, Huang F, Hu D, Tao L, Qian L, Liao J. Torsional Strain‐Independent Catalytic Enantioselective Synthesis of Biaryl Atropisomers. Angew Chem Int Ed Engl 2022; 61:e202211303. [DOI: 10.1002/anie.202211303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhang‐Hong Luo
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Wen‐Tao Wang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Tian‐Yi Tang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Sen Zhang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Fen Huang
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Dan Hu
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Ling‐Fei Tao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Linghui Qian
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
| | - Jia‐Yu Liao
- College of Pharmaceutical Sciences and Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310058 China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University Hangzhou 310018 China
| |
Collapse
|
8
|
Luo ZH, Wang WT, Tang TY, Zhang S, Huang F, Hu D, Tao LF, Qian L, Liao JY. Torsional Strain‐Independent Catalytic Enantioselective Synthesis of Biaryl Atropisomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhang-Hong Luo
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Wen-Tao Wang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Tian-Yi Tang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Sen Zhang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Fen Huang
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Dan Hu
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Ling-Fei Tao
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Linghui Qian
- Zhejiang University College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine CHINA
| | - Jia-Yu Liao
- Zhejiang University College of Pharmaceutical Sciences 866 Yuhangtang Road 310058 Hangzhou CHINA
| |
Collapse
|
9
|
Wang WT, Zhang S, Tao LF, Pan ZQ, Qian L, Liao JY. Cooperative catalysis-enabled C-N bond cleavage of biaryl lactams with activated isocyanides. Chem Commun (Camb) 2022; 58:6292-6295. [PMID: 35531758 DOI: 10.1039/d2cc01625g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The catalytic reaction of biaryl lactams with activated isocyanides is reported for the first time. By employing a cooperative catalytic system, oxazole-containing axially chiral biaryl anilines were obtained in high yields with excellent enantioselectivities. The key to the success lies in the atroposelective amide C-N bond cleavage with activated isocyanides.
Collapse
Affiliation(s)
- Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Sen Zhang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Ling-Fei Tao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Zi-Qi Pan
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, China. .,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| |
Collapse
|
10
|
Wang G, Huang J, Zhang J, Fu Z. Catalytically atroposelective ring-opening of configurationally labile compounds to access axially chiral biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this minireview, we evaluate and summarize the construction of axially chiral biaryls, and briefly state our personal perspectives on the future advancement of this direction.
Collapse
Affiliation(s)
- Guanjie Wang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenqian Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
11
|
Zhang J, Sun T, Zhang Z, Cao H, Bai Z, Cao ZC. Nickel-Catalyzed Enantioselective Arylative Activation of Aromatic C-O Bond. J Am Chem Soc 2021; 143:18380-18387. [PMID: 34705442 DOI: 10.1021/jacs.1c09797] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pioneering nickel-catalyzed cross-coupling of C-O electrophiles was unlocked by Wenkert in the 1970s; however, the transition-metal-catalyzed asymmetric activation of aromatic C-O bonds has never been reported. Herein the first enantioselective activation of an aromatic C-O bond is demonstrated via the catalytic arylative ring-opening cross-coupling of diarylfurans. This transformation is facilitated via nickel catalysis in the presence of chiral N-heterocyclic carbene ligands, and chiral 2-aryl-2'-hydroxy-1,1'-binaphthyl (ArOBIN) skeletons are delivered axially in high yields with high ee. Moreover, this versatile skeleton can be transformed into various synthetic useful intermediates, chiral catalysts, and ligands by using the CH- and OH-based modifiable sites. This chemistry features mild conditions and good atom economy.
Collapse
Affiliation(s)
- Jintong Zhang
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tingting Sun
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zishuo Zhang
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haiqun Cao
- Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhushuang Bai
- Shandong First Medical University, Jinan, Shandong 250117, China
| | - Zhi-Chao Cao
- Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
12
|
Zimmermann BM, Ngoc TT, Tzaras DI, Kaicharla T, Teichert JF. A Bifunctional Copper Catalyst Enables Ester Reduction with H 2: Expanding the Reactivity Space of Nucleophilic Copper Hydrides. J Am Chem Soc 2021; 143:16865-16873. [PMID: 34605649 DOI: 10.1021/jacs.1c09626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Employing a bifunctional catalyst based on a copper(I)/NHC complex and a guanidine organocatalyst, catalytic ester reductions to alcohols with H2 as terminal reducing agent are facilitated. The approach taken here enables the simultaneous activation of esters through hydrogen bonding and formation of nucleophilic copper(I) hydrides from H2, resulting in a catalytic hydride transfer to esters. The reduction step is further facilitated by a proton shuttle mediated by the guanidinium subunit. This bifunctional approach to ester reductions for the first time shifts the reactivity of generally considered "soft" copper(I) hydrides to previously unreactive "hard" ester electrophiles and paves the way for a replacement of stoichiometric reducing agents by a catalyst and H2.
Collapse
Affiliation(s)
- Birte M Zimmermann
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Trung Tran Ngoc
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Dimitrios-Ioannis Tzaras
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| | - Trinadh Kaicharla
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Johannes F Teichert
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.,Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
| |
Collapse
|
13
|
Shi Y, Wang J, Yin Q, Zhang X, Chiu P. Copper-Catalyzed Enantioselective 1,2-Reduction of Cycloalkenones. Org Lett 2021; 23:5658-5663. [PMID: 34255532 DOI: 10.1021/acs.orglett.1c01744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report an asymmetric 1,2-reduction of cyclic α,β-unsaturated ketones to access various enantiomerically enriched cyclic allylic alcohols under mild conditions, catalyzed by in situ generated copper hydride ligated with (R)-DTBM-C3*-TunePhos. α-Brominated cycloalkenones were reduced with excellent enantioselectivities of up to 98% ee, while substrates that were without α-substituents were reduced chemoselectively, with moderate enantioselectivities.
Collapse
Affiliation(s)
- Yongjie Shi
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingxin Wang
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qin Yin
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, China
| | - Xumu Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pauline Chiu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
14
|
Larson GL, Liberatore RJ. Organosilanes in Metal-Catalyzed, Enantioselective Reductions. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gerald L. Larson
- Vice President, Research and Development, emeritus, Gelest, Inc., Morrisville, Pennsylvania 19067, United States
| | | |
Collapse
|
15
|
Qian L, Tao LF, Wang WT, Jameel E, Luo ZH, Zhang T, Zhao Y, Liao JY. Catalytic Atroposelective Dynamic Kinetic Resolution of Biaryl Lactones with Activated Isocyanides. Org Lett 2021; 23:5086-5091. [PMID: 34110167 DOI: 10.1021/acs.orglett.1c01632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report herein an unprecedented atroposelective dynamic kinetic resolution of Bringmann's lactones with C-nucleophiles. By the use of activated isocyanides as the reagent, a wide range of novel axially chiral oxazole-substituted biaryl phenols were accessed in high yields with high enantioselectivities. Key to the success of this process lies in the tandem atroposelective addition of isocyanides to the lactone substrate followed by a rapid cyclization, overcoming the challenge of stereochemical leakage induced by lactol formation.
Collapse
Affiliation(s)
- Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ling-Fei Tao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ehtesham Jameel
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhang-Hong Luo
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
16
|
Lee S, Ryu DH, Yun J. Kinetic Resolution and Dynamic Kinetic Resolution of γ‐Aryl‐Substituted Butenolides via Copper‐Catalyzed 1,4‐Hydroboration. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Soyeon Lee
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Do Hyun Ryu
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
17
|
Cheng JK, Xiang SH, Li S, Ye L, Tan B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem Rev 2021; 121:4805-4902. [PMID: 33775097 DOI: 10.1021/acs.chemrev.0c01306] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atropisomerism is a stereochemical behavior portrayed by three-dimensional molecules that bear rotationally restricted σ bond. Akin to the well-represented point-chiral molecules, atropisomerically chiral compounds are finding increasing utilities in many disciplines where molecular asymmetry is influential. This provides steady demand on atroposelective synthesis, where numerous synthetic pursuits have been rewarded with conceptually novel and streamlined methods while expanding the structural diversity of atropisomers. This review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and nonbiaryl atropisomers documented between 2015 and 2020. Emphasis is placed on the synthetic strategies for each structural class, while examples are cited to illustrate the potential applications of the accessed atropochiral targets.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaoyu Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Carmona JA, Rodríguez-Franco C, López-Serrano J, Ros A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. Atroposelective Transfer Hydrogenation of Biaryl Aminals via Dynamic Kinetic Resolution. Synthesis of Axially Chiral Diamines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Carlos Rodríguez-Franco
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Inorgánica, Universidad de Sevilla and Centro de Innovación Química Avanzada (ORFEO-CINQA). Avda. Américo Vespucio, 49,41092 Sevilla, Spain
| | - Abel Ros
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
19
|
Li Z, Wang X, Cui YM, Ma JH, Fang LL, Han LL, Yang Q, Xu Z, Xu LW. Combined Dynamic Kinetic Resolution and C-H Functionalization for Facile Synthesis of Non-Biaryl-Atropisomer-Type Axially Chiral Organosilanes. Chemistry 2021; 27:4336-4340. [PMID: 33481303 DOI: 10.1002/chem.202100237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Although asymmetric C-H functionalization has been available for the synthesis of structurally diverse molecules, catalytic dynamic kinetic resolution (DKR) approaches to change racemic stereogenic axes remain synthetic challenges in this field. Here, a concise palladium-catalyzed DKR was combined with C-H functionalization involving olefination and alkynylation for the highly efficient synthesis of non-biaryl-atropisomer-type (NBA) axially chiral oragnosilanes. The chemistry proceeded through two different and distinct DKR: first, an atroposelective C-H olefination or alkynylation produced axially chiral vinylsilanes or alkynylsilanes as a new family of non-biaryl atropisomers (NBA), and second, the extension of this DKR strategy to twofold o,o'-C-H functionalization led to the multifunctional axially chiral organosilicon compounds with up to >99 % ee.
Collapse
Affiliation(s)
- Zhao Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xu Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jun-Han Ma
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Li-Lei Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Lu-Lu Han
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Qin Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Hangzhou, 311121, P. R. China
| |
Collapse
|
20
|
Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies. Chem Soc Rev 2021; 50:2968-2983. [DOI: 10.1039/d0cs00870b] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Atroposelective transformations of (hetero)biaryls are classified into desymmetrization, kinetic resolution, dynamic kinetic resolution, and dynamic kinetic asymmetric transformation depending on the nature and behavior of the starting material.
Collapse
Affiliation(s)
- José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - Carlos Rodríguez-Franco
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - Rosario Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| |
Collapse
|
21
|
Synthesis of a triethylene glycol-capped benzo[1,2-c:4,5-c']bis[2]benzopyran-5,12-dione: A highly soluble dilactone-bridged p-terphenyl with a crankshaft architecture. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zeng W, Tan X, Yu Y, Chen GQ, Zhang X. Copper-Catalyzed Asymmetric Hydrosilylation of β-Nitroethyl Aryl Ketones. Org Lett 2020; 22:858-862. [DOI: 10.1021/acs.orglett.9b04339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weijun Zeng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Xuefeng Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Yang Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Gen-Qiang Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People’s Republic of China
| |
Collapse
|