1
|
Yang W, Wang F, Wang H, Ding D, Jiang S, Zhang G. Platform for the Immobilizing of Ultrasmall Pd Clusters for Carbonylation: In Situ Self-Templating Fabrication of ZIF-8 on ZnO. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306794. [PMID: 38072816 DOI: 10.1002/smll.202306794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Incorporating metal clusters into the confined cavities of metal-organic frameworks (MOFs) to form MOF-supported catalysts has attracted considerable research interest with regard to carbonylation reactions. Herein, a self-templating method is used to prepare the zinc oxide (ZnO)-supported core-shell catalyst ZnO@Pd/ZIF-8. This facile strategy controls the growth of metal sources on the ZIF-8 shell layer and avoids the metal diffusion or aggregation problems of the conventional synthesis method. The characteristics of the catalysts show that the palladium (Pd) clusters are highly dispersed with an average particle size of ≈1.2 nm, making them excellent candidates as a catalyst for carbonylation under mild conditions. The optimal catalyst (1.25-ZnO@Pd/ZIF-8) exhibits excellent activity in synthesizing α, β-alkynyl ketones under 1 atm of carbon monooxide (CO), and the conversion rate of 1, 3-diphenylprop-2-yn-1-one is 3.09 and 3.87 times more than those of Pd/ZIF-8 and Pd2+, respectively, for the first 2 h. Moreover, the 1.25-ZnO@Pd/ZIF-8 is recyclable, showing negligible metal leaching, and, under the conditions used in this investigation, can be reused at least five times without considerable loss in its catalytic efficiency. This protocol can also be applied with other nucleophile reagents to synthesize esters, amides, and acid products.
Collapse
Affiliation(s)
- Wei Yang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Fangchao Wang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - He Wang
- The third Military Representative Office in Taiyuan, Taiyuan, Shanxi, 030001, P. R. China
| | - Ding Ding
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Guoying Zhang
- Institute of Coal Chemistry, State Key Laboratory of Coal Conversion, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| |
Collapse
|
2
|
Zhu YM, Xu XP, Ji SJ. Divergent Synthesis of Pentacyclic Isoindolinones Enabled by Sequential Insertion of Two Different Isocyanides and Acid Promoted Cyclization of Ketenimines. Org Lett 2023; 25:2041-2046. [PMID: 36946492 DOI: 10.1021/acs.orglett.3c00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
A palladium-catalyzed multicomponent reaction involving o-bromobenzaldehydes and two different isocyanides was developed to assemble series of isoindolinones with spiroindolenine or azepinoindole skeletons. This sequential insertion reaction features mild conditions, a wide substrate scope, and high efficiency. Preliminary mechanistic study indicated that the difference in steric hindrance between isocyanide components is crucial when regulating the reaction sequence, whereas the ligand also played an important role during the whole process.
Collapse
Affiliation(s)
- Yi-Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
3
|
Li Y, Li Y, Fei H, Kong R, Yu Z, He L. Synthesis of 3-(2-oxopropyl)-2-arylisoindolinone derivatives via a three-component reaction of diaryliodonium salts with 2-formylbenzonitriles and phenylacetylenes. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211063799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A copper-catalyzed multicomponent cascade cyclization using readily available substrates, including 2-formylbenzonitriles, phenylacetylenes, and diaryliodonium salts, is achieved. A broad reaction scope is presented with good functional group compatibility, giving rise to a range of 3-(2-oxopropyl)-2-arylisoindolinones in moderate to good yields.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, P.R. China
| | - Yuan Li
- School of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, P.R. China
| | - Haiyang Fei
- School of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, P.R. China
| | - Ruiping Kong
- School of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, P.R. China
| | - Zhenzhong Yu
- School of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, P.R. China
| | - Liu He
- School of Pharmaceutical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai’an, P.R. China
| |
Collapse
|
4
|
Khot NP, Mahato P, T K S, Mukherjee S, Kapur M. Rh(III)-Catalyzed C(7)-H Alkylation of Quinolines in the Synthesis of Angular π-Extended Pyrroloquinolines for Single-Component White-Light Emission. Org Lett 2022; 24:2186-2191. [PMID: 35262360 DOI: 10.1021/acs.orglett.2c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reported herein is a sustainable approach for a regioselective, Rh(III)-catalyzed C(7)-H alkylation of 8-aminoquinolines via metal carbene migratory insertion. This transformation displays a high functional group tolerance and exquisite site selectivity to afford the C-7 alkylated products. These products are derivatized to afford π-extended angular pyrroloquinolines, one of which (4h) shows white-light emission (WLE) with CIE coordinates (0.26, 0.34). An excellent cell viability and in vivo cellular imaging substantiate the nontoxic nature of these compounds.
Collapse
Affiliation(s)
- Nandkishor Prakash Khot
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 MP, India
| | - Paritosh Mahato
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 MP, India
| | - Sajeev T K
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 MP, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 MP, India
| |
Collapse
|
5
|
Jha N, Khot NP, Kapur M. Transition-Metal-Catalyzed C-H Bond Functionalization of Arenes/Heteroarenes via Tandem C-H Activation and Subsequent Carbene Migratory Insertion Strategy. CHEM REC 2021; 21:4088-4122. [PMID: 34647679 DOI: 10.1002/tcr.202100193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
The past decade has witnessed tremendous developments in transition-metal-catalyzed C-H bond activation and subsequent carbene migratory insertion reactions, thus assisting in the construction of diverse arene/heteroarene scaffolds. Various transition-metal catalysts serve this purpose and provide efficient pathways for an easy access to substituted heterocycles. A brief introduction to metal-carbenes has been provided along with key mechanistic pathways underlying the coupling reactions. The purpose of this review is to provide a concise knowledge about diverse directing group-assisted coupling of varied arenes/heteroarenes and acceptor-acceptor/donor-acceptor diazo compounds. The review also highlights the synthesis of various carbocycles and fused heterocycles through diazo insertion pathways, via C-C, C-N and C-O bond forming reactions. The mechanism usually involves a C-H activation process, followed by diazo insertion leading to subsequent coupling.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
6
|
Cobalt-catalyzed C H activation of N-carbamoyl indoles or benzamides with maleimides: Synthesis of imidazo[1,5-a]indole- or isoindolone-incorporated spirosuccinimides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Savela R, Méndez‐Gálvez C. Isoindolinone Synthesis via One-Pot Type Transition Metal Catalyzed C-C Bond Forming Reactions. Chemistry 2021; 27:5344-5378. [PMID: 33125790 PMCID: PMC8048987 DOI: 10.1002/chem.202004375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Indexed: 11/06/2022]
Abstract
Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.
Collapse
Affiliation(s)
- Risto Savela
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| | - Carolina Méndez‐Gálvez
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| |
Collapse
|
8
|
Li MH, Si XJ, Zhang H, Yang D, Niu JL, Song MP. Directed Cobalt-Catalyzed C-H Activation to Form C-C and C-O Bonds in One Pot via Three-Component Coupling. Org Lett 2021; 23:914-919. [PMID: 33475370 DOI: 10.1021/acs.orglett.0c04122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we disclose an efficient cobalt-catalyzed three-component coupling of benzamides, diazo compounds, and tert-butyl hydroperoxide, which provides an efficient approach to construct C(sp2)-C(sp3) and C-O bonds in one-pot accompanied with C-H activation. This protocol features low catalyst loading (4 mol %), the avoidance of additives, and excellent functional group compatibility, providing three-component coupling adducts with high yields under mild conditions (up to 88%). Mechanism studies show that the reaction may involve a radical process.
Collapse
Affiliation(s)
- Meng-Hui Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Borja-Miranda A, Valencia-Villegas F, Lujan-Montelongo JA, Polindara-García LA. Synthesis of Polysubstituted Isoindolinones via Radical Cyclization of 1,3-Dicarbonyl Ugi-4CR Adducts Using Tetrabutylammonium Persulfate and TEMPO. J Org Chem 2021; 86:929-946. [PMID: 33291875 DOI: 10.1021/acs.joc.0c02441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of an efficient method for the synthesis of polysubstituted isoindolinones from 1,3-dicarbonyl Ugi-4CR adducts, employing an aromatic radical cyclization process promoted by tetrabutylammonium persulfate and 2,2,6,6-tetramethyl-1-piperidine 1-oxyl (TEMPO), is described. The protocol allowed the construction of a library of isoindolinones bearing a congested carbon in good to excellent yields under mild conditions and in short reaction times.
Collapse
Affiliation(s)
- Andrés Borja-Miranda
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| | - Fabiola Valencia-Villegas
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| | | | - Luis A Polindara-García
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| |
Collapse
|
10
|
Abe M, Ueta K, Tanaka S, Kimachi T, Inamoto K. Palladium-catalyzed dehydrogenative C–H cyclization for isoindolinone synthesis. RSC Adv 2021; 11:26988-26991. [PMID: 35479970 PMCID: PMC9037686 DOI: 10.1039/d1ra04661f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
In this paper Pd-catalyzed intramolecular dehydrogenative C(sp3)–H amidation for the synthesis of isoindolinones is described. This method features the use of a Pd/C catalyst and the addition of a stoichiometric amount of oxidant is not necessary. A mechanistic study suggested the possible formation of H2 gas during the reaction. Pd-catalyzed intramolecular dehydrogenative C(sp3)–H amidation for the synthesis of isoindolinones was developed. Use of Pd/C as a catalyst enables the desired cyclization to proceed smoothly without adding any stoichiometric oxidants.![]()
Collapse
Affiliation(s)
- Masahiro Abe
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kaho Ueta
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Saki Tanaka
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| |
Collapse
|
11
|
Dodangeh M, Ramazani A, Maghsoodlou MT, Zarei A, Rezayati S. Application of Readily Available Metals for C-H Activation. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200616114037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catalytic C-H activation is a powerful method for organic synthesis. In recent
years, scientists have made great progress by developing transitional metals for catalyzing CH
functionalization reaction. In this review, we summarized and highlighted recent progress
in C-H activation with copper, cobalt, iron, manganese, and nickel as catalysts.
Collapse
Affiliation(s)
- Mohammad Dodangeh
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Malek-Taher Maghsoodlou
- Department of Chemistry, The University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran
| | - Armin Zarei
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Sobhan Rezayati
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
12
|
Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. Cobalt-Catalyzed Oxidative C-H Activation: Strategies and Concepts. CHEMSUSCHEM 2020; 13:3306-3356. [PMID: 32065843 DOI: 10.1002/cssc.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100, Pavia, Italy
| |
Collapse
|
13
|
Tsujihara T, Yamauchi H, Tamura S, Takehara T, Suzuki T, Kawano T. Diastereoselective direct amidation/aza-Michael cascade reaction to synthesize cis-1,3-disubstituted isoindolines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Guo T, Wang H, Cao C, Chen K, Liu Y, Zhang P, Zhao Y, Ma Y. Highly Efficient and Eco‐Benign Synthesis of 3‐Imidazoheterocyclic‐Substituted Phthalides/Isoindolinones in Water under Catalyst‐ and Additive‐Free Conditions. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Hui‐Jie Wang
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Can‐Can Cao
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Kuo‐Hong Chen
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Yu Liu
- School of Chemistry and Chemical Engineering Henan University of Technology 450001 Zhengzhou Henan P. R. China
| | - Pan‐Ke Zhang
- College of Chemistry, and Institute of Green Catalysis, Henan Institute of Advanced Technology Zhengzhou University 450001 Zhengzhou Henan P. R. China
| | - Yun‐Hui Zhao
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology 411201 Xiangtan Hunan P. R. China
| | - Yong‐Cheng Ma
- Pharmacy Department Fuwai Centeral China Cardiovascular Hospital No.1, Fuwai Road 451464 Zhengzhou Henan P. R. China
| |
Collapse
|
15
|
Yang C, Chen C, Li S, He X, Zuo Y, Hu W, Zhou T, Wang J, Shang Y. Rh(III)-Catalyzed Relay Double Carbenoid Insertion and Diannulation of Sulfoximine Benzamides with α-Diazo Carbonyl Compounds: Access to Furo[2,3-c]isochromenes. Org Lett 2020; 22:2506-2511. [DOI: 10.1021/acs.orglett.9b04659] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chen Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Chen Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Shunfan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Wangcheng Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|