1
|
Tang B, Ju S, Yan W, Chen T, Stephan DW, Wu Y. Reactivity of N-(isocyanoimino)triphenylphosphorane toward group 13 Lewis acids. Chem Commun (Camb) 2024; 60:12932-12935. [PMID: 39421958 DOI: 10.1039/d4cc04490h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The species Ph3PNNC 1 reacts with the group 13 Lewis acids E(C6F5)3 (E = B or Al), HB(C6F5)2, ClAl(C6F5)2 and ECl3 (E = Ga or In) to give the Lewis acid-base adduct Ph3PNNCB(C6F5)3 2, the zwitterionic product (Ph3PNH)B(C6F5)2CNB(C6F5)2H 3, the chelated salts [(Ph3PNNC(CN)NPPh3)ER2][EX2R2] (E = Al, R = X = C6F5, 4; E = Al, R = C6F5, X = Cl, 5; E = Ga, R = X = Cl, 6), and the neutral species [(Ph3PNNC(CN)NPPh3)InCl3] 7. The nature of these variations in reactivity are rationalized and the potential utility considered.
Collapse
Affiliation(s)
- Beili Tang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Shaoying Ju
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Weili Yan
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, Zhejiang, China
| | - Ting Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
- Department of Chemistry, University of Toronto, Toronto, 80 St. George Street, Ontario M5S 3H6, Canada.
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
2
|
Stefkova K, Guerzoni MG, van Ingen Y, Richards E, Melen RL. Correction to "B(C 6F 5) 3-Catalyzed Diastereoselective and Divergent Reactions of Vinyldiazo Esters with Nitrones: Synthesis of Highly Functionalized Diazo Compounds". Org Lett 2024; 26:6070. [PMID: 38990051 PMCID: PMC11267595 DOI: 10.1021/acs.orglett.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Indexed: 07/12/2024]
|
3
|
Guerzoni MG, van Ingen Y, Babaahmadi R, Wirth T, Richards E, Melen RL. Correction: An un-forgotten classic: the nitro-Mannich reaction between nitrones and silyl nitronates catalysed by B(C 6F 5) 3. Chem Sci 2024; 15:10247. [PMID: 38966376 PMCID: PMC11220604 DOI: 10.1039/d4sc90113d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
[This corrects the article DOI: 10.1039/D3SC05672D.].
Collapse
Affiliation(s)
- Michael G Guerzoni
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Translational Research Hub, Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Yara van Ingen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Translational Research Hub, Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Rasool Babaahmadi
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Translational Research Hub, Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales UK
| | - Emma Richards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Translational Research Hub, Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT Cymru/Wales UK
| | - Rebecca L Melen
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Translational Research Hub, Maindy Road, Cathays Cardiff CF24 4HQ Cymru/Wales UK
| |
Collapse
|
4
|
Debnath I, Roy T, Borah D, Mahata K. Stable peri-Naphthoisatogens without C2 Protection: Synthesis via Aldrone Condensation, Optical Properties and 1,3-Dipolar Cycloaddition Reaction. Chem Asian J 2023:e202300827. [PMID: 37929899 DOI: 10.1002/asia.202300827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/07/2023]
Abstract
peri-Annulation of naphthalane, an important tool for realization of wide range of functional materials, is presently accomplished with limited few functional groups like imide, amide and diamine-derivative (perimidine). To increase the diversity, we have incorporated α-keto aldonitrone as a new functional group, and herein report about five peri-naphthoisatogens (PNTIs) dyes. The synthesis were accomplished using an unusual reaction of aromatic nitro group, which is nucleophilic attack of a C-nucleophile (enol) to the N-atom of nitro group. In five different 5-alkylamino-8-nitro-1-acetylnaphthalenes, intramolecular acid-catalyzed nucleophilic attack of enol moiety to the N-atom of nitro group produced α-keto aldonitrone via addition-elimination mechanism. The PNTIs showed characteristics of 1,3-dipole and reacted with ethyl acrylate to produce isoxazolidine ring, which subsequently converted into aza phenalenone derivative via ring cleavage. Both the PNTI and the corresponding derivative strongly absorb in the visible region, displaying absorption maximum at 551 and 561 nm (in CHCl3 ) respectively. Compared to the popular analogous dye naphthalene monoimides, PNTIs showed bathochromic shift of absorption maximum by more than 100 nm. The emission maximum for the PNTI and its derivative in chloroform were observed at 594 and 635 nm respectively.
Collapse
Affiliation(s)
- Indraneel Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam, 781039, India
| | - Tirupati Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam, 781039, India
| | - Dharismita Borah
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam, 781039, India
| | - Kingsuk Mahata
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
5
|
Triphenylborane in Metal-Free Catalysis. Molecules 2023; 28:molecules28031340. [PMID: 36771006 PMCID: PMC9920172 DOI: 10.3390/molecules28031340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
The development and application of new organoboron reagents as Lewis acids in synthesis and metal-free catalysis have dramatically expanded over the past 20 years. In this context, we will show the recent uses of the simple and relatively weak Lewis acid BPh3-discovered 100 years ago-as a metal-free catalyst for various organic transformations. The first part will highlight catalytic applications in polymer synthesis such as the copolymerization of epoxides with CO2, isocyanate, and organic anhydrides to various polycarbonate copolymers and controlled diblock copolymers as well as alternating polyurethanes. This is followed by a discussion of BPh3 as a Lewis acid component in the frustrated Lewis pair (FLP) mediated cleavage of hydrogen and hydrogenation catalysis. In addition, BPh3-catalyzed reductive N-methylations and C-methylations with CO2 and silane to value-added organic products will be covered as well along with BPh3-catalyzed cycloadditions and insertion reactions. Collectively, this mini-review showcases the underexplored potential of commercially available BPh3 in metal-free catalysis.
Collapse
|
6
|
Mayer RJ, Hampel N, Ofial AR. Lewis Acidic Boranes, Lewis Bases, and Equilibrium Constants: A Reliable Scaffold for a Quantitative Lewis Acidity/Basicity Scale. Chemistry 2021; 27:4070-4080. [PMID: 33215760 PMCID: PMC7985883 DOI: 10.1002/chem.202003916] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/15/2022]
Abstract
A quantitative Lewis acidity/basicity scale toward boron-centered Lewis acids has been developed based on a set of 90 experimental equilibrium constants for the reactions of triarylboranes with various O-, N-, S-, and P-centered Lewis bases in dichloromethane at 20 °C. Analysis with the linear free energy relationship log KB =LAB +LBB allows equilibrium constants, KB , to be calculated for any type of borane/Lewis base combination through the sum of two descriptors, one for Lewis acidity (LAB ) and one for Lewis basicity (LBB ). The resulting Lewis acidity/basicity scale is independent of fixed reference acids/bases and valid for various types of trivalent boron-centered Lewis acids. It is demonstrated that the newly developed Lewis acidity/basicity scale is easily extendable through linear relationships with quantum-chemically calculated or common physical-organic descriptors and known thermodynamic data (ΔHBF 3 ). Furthermore, this experimental platform can be utilized for the rational development of borane-catalyzed reactions.
Collapse
Affiliation(s)
- Robert J. Mayer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Nathalie Hampel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Armin R. Ofial
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
7
|
Efremova MM, Molchanov AP, Novikov AS, Starova GL, Muryleva AA, Slita AV, Zarubaev VV. 1,3-Dipolar cycloaddition of N-allyl substituted polycyclic derivatives of isoindole-1,3-dione with nitrones and nitrile oxides: An experimental and theoretical investigation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|