1
|
Sun S, Zhang Y, Banwell MG, White LV, Zhou L. Iridium-Catalyzed, Highly Selective Allylation of Pyrazolones for the Convenient Construction of Adjacent Stereocenters. Org Lett 2024; 26:10229-10234. [PMID: 39576759 DOI: 10.1021/acs.orglett.4c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
This paper describes an iridium-catalyzed allylation of ring-fused pyrazolones that proceeds with excellent regio-, diastereo- and enantio-selectivities. The approach exploits unactivated, racemic allylic alcohols as a source of allyl building blocks. Asymmetric syntheses of a series of biologically relevant, chiral pyrazolones highlight the utility of the methodology. The use of Cu(OTf)2 as a co-catalyst greatly enhances the regioselectivity of the reaction and permits selective syntheses of branched allylation products.
Collapse
Affiliation(s)
- Shixiang Sun
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuqi Zhang
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| | - Leijie Zhou
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
2
|
Wang Y, Wang Y, Du X, Zheng K, Zhai S, Bai S, Fang L, Zhang T. Catalytic Enantioselective Propargylation of Pyrazolones by Amide-Based Phase-Transfer Catalysts. Org Lett 2024; 26:7318-7323. [PMID: 39185762 DOI: 10.1021/acs.orglett.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In this paper, we developed a highly enantioselective alkylation of 4-substituted pyrazolones catalyzed by phase-transfer catalysis. Cheap halohydrocarbons were employed as electrophilic alkylationg agents, and propargyl, allyl, and benzyl products with all-carbon quaternary stereocenters were afforded with excellent enantioselectivities and good yields. We found that the unique structures of the catalyst (hydrogen bond donors of the C-9 hydroxyl group and amide group, the triphenyl at the NH-position) were important for good enantioselectivity. Furthermore, chiral propargyl products could be easily connected to azide molecules by click cycloaddition, which offers unique opportunities to obtain structurally diverse chiral pyrazolones.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yingying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaoyu Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Kaiting Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shuman Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
3
|
Wang R, Zhang L, Luo S. Aerobic Asymmetric Allylic C-H Alkylation by Synergistic Chiral Primary Amine-Palladium-Hydroquinone Catalysis. Chemistry 2024; 30:e202304316. [PMID: 38179799 DOI: 10.1002/chem.202304316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
A synergistic chiral primary amine/palladium /p-hydroquinone catalysis was developed to facilitate oxidative asymmetric allylic C-H alkylation under aerobic conditions. The ternary synergistic catalysis enables a facile allylic C-H activation and alkylation with oxygen so that stoichiometric utilization of benzoquinone can be avoided. The identified optimal catalytic system allows for terminal addition to allyl arenes with α-branched β-ketocarbonyls to afford allylic adducts bearing all-carbon quaternary centers with high regio- and enantioselectivity. This work provides new insights for further studies on the aerobically oxidative C-H alkylation reaction.
Collapse
Affiliation(s)
- Rui Wang
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Long Zhang
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Richard F, Clark P, Hannam A, Keenan T, Jean A, Arseniyadis S. Pd-Catalysed asymmetric allylic alkylation of heterocycles: a user's guide. Chem Soc Rev 2024; 53:1936-1983. [PMID: 38206332 DOI: 10.1039/d3cs00856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This review provides an in-depth analysis of recent advances and strategies employed in the Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of nucleophilic prochiral heterocycles. The review is divided into sections each focused on a specific family of heterocycle, where optimisation data and reaction scope have been carefully analysed in order to bring forward specific reactivity and selectivity trends. The review eventually opens on how computer-based technologies could be used to predict an ideally matched catalytic system for any given substrate. This user-guide targets chemists from all horizons interested in running a Pd-AAA reaction for the preparation of highly enantioenriched heterocyclic compounds.
Collapse
Affiliation(s)
- François Richard
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Paul Clark
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Al Hannam
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Thomas Keenan
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stellios Arseniyadis
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
5
|
Nong ZS, Chen XR, Wang PS, Hong X, Gong LZ. Enantioconvergent Palladium-Catalyzed Alkylation of Tertiary Allylic C-H Bonds. Angew Chem Int Ed Engl 2023; 62:e202312547. [PMID: 37752890 DOI: 10.1002/anie.202312547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
Enantioconvergent catalysis enables the conversion of racemic molecules into a single enantiomer in perfect yield and is considered an ideal approach for asymmetric synthesis. Despite remarkable advances in this field, enantioconvergent transformations of inert tertiary C-H bonds remain largely unexplored due to the high bond dissociation energy and the surrounding steric repulsion that pose unparalleled constraints on bond cleavage and formation. Here, we report an enantioconvergent Pd-catalyzed alkylation of racemic tertiary allylic C-H bonds of α-alkenes, providing a unique approach to access a broad range of enantioenriched γ,δ-unsaturated carbonyl compounds featuring quaternary carbon stereocenters. Mechanistic studies reveal that a stereoablative event occurs through the rate-limiting cleavage of tertiary allylic C-H bonds to generate σ-allyl-Pd species, and the achieved E/Z-selectivity of σ-allyl-Pd species effectively regulates the diastereoselectivity via a nucleophile coordination-enabled SN 2'-allylation pathway.
Collapse
Affiliation(s)
- Zhong-Sheng Nong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin-Ran Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Pu-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, 230026, China
| |
Collapse
|
6
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
7
|
Xue A, Wei S, Wei X, Huang Y, Qu J, Wang B. Squaramide-catalyzed asymmetric regioselective allylic alkylation of 4-aminopyrazolones with Morita-Baylis-Hillman carbonates. Org Biomol Chem 2023; 21:7173-7179. [PMID: 37609939 DOI: 10.1039/d3ob01098h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An efficient squaramide-catalyzed asymmetric allylic alkylation of 4-aminopyrazolones with various MBH carbonates via different pathways has been described. This method provides access to a series of pyrazolone derivatives bearing a nitrogen-containing quaternary stereocenter in high yields with excellent enantioselectivities and regioselectivities under mild conditions. In addition, we utilized the target products to construct a range of bi-heterocyclic skeletons through [3 + 2] cycloadditions. These novel hybrid heterocycles would be promising candidates for drug-discovery programs and chemical biology.
Collapse
Affiliation(s)
- Aiqi Xue
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Shiqiang Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
8
|
Wang R, Wang Y, Ding R, Staub PB, Zhao CZ, Liu P, Wang YM. Designed Iron Catalysts for Allylic C-H Functionalization of Propylene and Simple Olefins. Angew Chem Int Ed Engl 2023; 62:e202216309. [PMID: 36622129 PMCID: PMC9974915 DOI: 10.1002/anie.202216309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Propylene gas is produced worldwide by steam cracking on million-metric-ton scale per year. It serves as a valuable starting material for π-bond functionalization but is rarely applied in transition metal-catalyzed allylic C-H functionalization for fine chemical synthesis. Herein, we report that a newly-developed cationic cyclopentadienyliron dicarbonyl complex allows for the conversion of propylene to its allylic C-C bond coupling products under catalytic conditions. This approach was also found applicable to the allylic functionalization of simple α-olefins with distinctive branched selectivity. Experimental and computational mechanistic studies supported the allylic deprotonation of the metal-coordinated alkene as the turnover-limiting step and led to insights into the multifaceted roles of the newly designed ligand in promoting allylic C-H functionalization with enhanced reactivity and stereoselectivity.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ruiqi Ding
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Parker B Staub
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christopher Z Zhao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Xiang X, He Z, Dong X. Recent Advances of Efficient Synthesis of Chiral Molecules Promoted by Pd/Chiral Phosphoric Acid Synergistic Catalysis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
10
|
Yue Q, Liu B, Liao G, Shi BF. Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330031, China
| | - Gang Liao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543Republic of Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
11
|
Liu M, Sun J, Erbay TG, Ni H, Martín‐Montero R, Liu P, Engle KM. Pd II -Catalyzed C(alkenyl)-H Activation Facilitated by a Transient Directing Group. Angew Chem Int Ed Engl 2022; 61:e202203624. [PMID: 35467792 PMCID: PMC9320856 DOI: 10.1002/anie.202203624] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Palladium(II)-catalyzed C(alkenyl)-H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)-H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3-diene with high regio- and E/Z-selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2-aryl-substituted 1,3-dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X-ray crystallography, and the energy profiles of the C(alkenyl)-H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Mingyu Liu
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Juntao Sun
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Tuğçe G. Erbay
- Department of ChemistryUniversity of PittsburghPittsburghPA 15260USA
| | - Hui‐Qi Ni
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Raúl Martín‐Montero
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| | - Peng Liu
- Department of ChemistryUniversity of PittsburghPittsburghPA 15260USA
| | - Keary M. Engle
- Department of ChemistryThe Scripps Research Institute10550 N. Torrey Pines RoadLa JollaCA 92037USA
| |
Collapse
|
12
|
Muzart J. Allylic C(
sp
3
)−C(
sp
3
) Bond Formation Through Pd‐Catalyzed C(
sp
3
)−H Activation of Alkenes and 1,4‐Dienes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jacques Muzart
- Institut de Chimie Moléculaire de Reims, UMR 7312 CNRS – Université de Reims Champagne-Ardenne B.P. 1039 51687 Reims Cedex 2 France
| |
Collapse
|
13
|
Liu M, Sun J, Erbay TG, Ni H, Martín‐Montero R, Liu P, Engle KM. Pd
II
‐Catalyzed C(alkenyl)−H Activation Facilitated by a Transient Directing Group**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mingyu Liu
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Juntao Sun
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Tuğçe G. Erbay
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Hui‐Qi Ni
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Raúl Martín‐Montero
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Keary M. Engle
- Department of Chemistry The Scripps Research Institute 10550 N. Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
14
|
Wannenmacher N, Heberle M, Yu X, Demircan A, Wanner DM, Pfeffer C, Peters R. Diastereospecific Enantiodivergent Allylation of Pyrazolones as an Entry to β‐Aminoamides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nick Wannenmacher
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Martin Heberle
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Xin Yu
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Aysegül Demircan
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Daniel M. Wanner
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Camilla Pfeffer
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart Germany
| |
Collapse
|
15
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
16
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C-H Alkylation via a Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022; 61:e202115715. [PMID: 35040550 DOI: 10.1002/anie.202115715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/08/2023]
Abstract
An asymmetric allylic C-H functionalization has been developed by making use of transient chiral nucleophiles, as well as bimetallic synergistic catalysis with an achiral Pd0 catalyst and a chiral N,N'-dioxide-CoII complex. A variety of β-ketoesters and N-Boc oxindoles coupled with allylbenzenes and aliphatic terminal alkenes were well tolerated, furnishing the desired allylic alkylation products in high yields (up to 99 %) with excellent regioselectivities and enantioselectivities (up to 99 % ee).
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
17
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C−H Alkylation via Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongkai Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yang Xu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
18
|
Wang G, Zhang S, Ding T, Li P, Sun Z. Highly Site‐ and Enantioselective
N‐H
Functionalization of N‐ Monosubstituted Aniline Derivatives Affording Pyrazolones Bearing a Quaternary Stereocenter. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guan‐Jun Wang
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shu‐Yu Zhang
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tong‐Mei Ding
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macao 999078 China
| | - Zhen‐Liang Sun
- Southern Medical University Affiliated Fengxian Hospital Shanghai China 201499
| |
Collapse
|
19
|
Wang TC, Zhu L, Luo S, Nong ZS, Wang PS, Gong LZ. Palladium-Catalyzed Enantioselective C(sp 3)-H/C(sp 3)-H Umpolung Coupling of N-Allylimine and α-Aryl Ketones. J Am Chem Soc 2021; 143:20454-20461. [PMID: 34817997 DOI: 10.1021/jacs.1c10721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asymmetric functionalization of the C(sp3)-H bond is an attractive yet challenging strategy to achieve versatile bond-forming events, enabling the precise assembly of molecular complexity with minimal manipulation of functional groups. Here, we report an asymmetric C(sp3)-H/C(sp3)-H umpolung coupling of N-allylimine and coordinating α-aryl carbonyls by using chiral phosphoramidite-palladium catalysis. A wide variety of α-heteroaryl ketones and 2-acylimidazoles are nicely tolerated to open a convenient and tunable avenue for efficient synthesis of enantioenriched β-amino-γ,δ-unsaturated carbonyl derivatives with high levels of regio- and stereoselectivities, capable of providing a key intermediate for asymmetric synthesis of Focalin. This protocol showcases an umpolung reactivity of the N-allylimines through a concerted proton and two-electron transfer process to cleave the allylic C-H bond, effectively complementing established methodology for allylic C-H functionalization. An inner-sphere allylation pathway for both α-heteroaryl carbonyls and 2-acylimidazoles to attack the π-allylpalladium species is suggested by computational studies and experimental facts, wherein the nitrogen coordination to the palladium center enables the preference of branched regioselectivity.
Collapse
Affiliation(s)
- Tian-Ci Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ling Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shiwei Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Sheng Nong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.,Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Gong LZ, Wang PS. Asymmetric C–H Functionalization Enabled by Pd/Chiral Phosphoric Acid Combined Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1662-7096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractOver the past decade, the combination of chiral phosphoric acid and palladium catalysis has emerged as a robust strategy to accomplish the regio- and stereoselective functionalization of inactive C–H bonds, enabling access to various types of chirality (central, planar, and axial). This review article describes the origin and advances in the asymmetric functionalization of allylic C–H, C(sp2)–H, and C(sp3)–H bonds enabled by chiral phosphoric acid and palladium combined catalysis.1 Introduction2.1 Enantioselective Allylic C–H Functionalization2.2 Enantioselective Non-allylic C(sp3)–H Functionalization2.3 Enantioselective C(sp2)–H Functionalization3 Conclusion
Collapse
Affiliation(s)
- Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China
| |
Collapse
|
21
|
Wang K, Lin X, Liu Y, Li C. Palladium-Catalyzed Asymmetric Allylic C–H Functionalization for the Synthesis of Hydroquinolines through Intermolecular [4+2] Cycloadditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kai Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangfeng Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
22
|
Li D, Zhang W, Zhang S, Sun W, Zhao J, Wang B, Qu J, Zhou Y. Palladium-Catalyzed Asymmetric Trifluoromethylated Allylic Alkylation of Pyrazolones Enabled by α-(Trifluoromethyl)alkenyl Acetates. Org Lett 2021; 23:5804-5808. [PMID: 34279113 DOI: 10.1021/acs.orglett.1c01957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The first asymmetric trifluoromethylated allylic alkylation of pyrazolones using α-(trifluoromethyl)alkenyl acetates as a novel trifluoromethylated allylation reagent is described, affording various functionalized chiral pyrazolones containing a trifluoromethylated allyl substituent in high yields with excellent regio-/enantio-/diastereoselectivities. Mechanistically, the double-bond migration of α-(trifluoromethyl)alkenyl acetates in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene is initial and interesting step. More importantly, this study is of significance in providing a novel and widely applicable trifluoromethyl-containing allylation reagent.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wande Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
23
|
Dai ZY, Wang PS, Gong LZ. Access to chiral γ-butenolides via palladium-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes. Chem Commun (Camb) 2021; 57:6748-6751. [PMID: 34236350 DOI: 10.1039/d1cc02295d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric allylic C-H alkylation of 1,4-pentadienes with α-angelica lactones has been developed by tri-axial phosphoramidite-palladium catalysis. This reaction can tolerate a range of functional groups under mild conditions, furnishing versatile chiral γ,γ-disubstituted butenolides in high yields with good to high levels of stereoselectivity.
Collapse
Affiliation(s)
- Zhen-Yao Dai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China. and Center for Excellence in Molecular Synthesis of CAS, Hefei 230026, China
| |
Collapse
|
24
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
25
|
Bunno Y, Tsukimawashi Y, Kojima M, Yoshino T, Matsunaga S. Metal-Containing Schiff Base/Sulfoxide Ligands for Pd(II)-Catalyzed Asymmetric Allylic C–H Aminations. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Youka Bunno
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuta Tsukimawashi
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
26
|
Li MH, Si XJ, Zhang H, Yang D, Niu JL, Song MP. Directed Cobalt-Catalyzed C-H Activation to Form C-C and C-O Bonds in One Pot via Three-Component Coupling. Org Lett 2021; 23:914-919. [PMID: 33475370 DOI: 10.1021/acs.orglett.0c04122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we disclose an efficient cobalt-catalyzed three-component coupling of benzamides, diazo compounds, and tert-butyl hydroperoxide, which provides an efficient approach to construct C(sp2)-C(sp3) and C-O bonds in one-pot accompanied with C-H activation. This protocol features low catalyst loading (4 mol %), the avoidance of additives, and excellent functional group compatibility, providing three-component coupling adducts with high yields under mild conditions (up to 88%). Mechanism studies show that the reaction may involve a radical process.
Collapse
Affiliation(s)
- Meng-Hui Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
27
|
Wang PS, Gong LZ. Palladium-Catalyzed Asymmetric Allylic C-H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications. Acc Chem Res 2020; 53:2841-2854. [PMID: 33006283 DOI: 10.1021/acs.accounts.0c00477] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asymmetric functionalization of inert C-H bonds is undoubtedly a synthetically significant yet challenging bond-forming process, allowing for the preparation of densely functionalized molecules from abundantly available feedstocks. In the past decade, our group and others have found that trivalent phosphorus ligands are capable of facilitating Pd-catalyzed allylic C-H functionalization of α-alkenes upon using p-quinone as an oxidant. In these reactions, a 16-electron Pd(0) complex bearing a monodentate phosphorus ligand, a p-quinone, and an α-alkene has been identified as a key intermediate. Through a concerted proton and two-electron transfer process, electrophilic π-allylpalladium is subsequently generated and can be leveraged to forge versatile chemical bonds with a wide range of nucleophiles. This Account focuses on describing the origin, evolution, and synthetic applications of Pd-catalyzed asymmetric allylic C-H functionalization reactions, with an emphasis on the fundamental mechanism of the concerted proton and two-electron transfer process in allylic C-H activation.Enabled by the cooperative catalysis of the palladium complex of triarylphosphine, a primary amine, and a chiral phosphoric acid, an enantioselective α-allylation of aldehydes with α-alkenes is established. The combination of chiral phosphoric acid and a palladium complex of a chiral phosphoramidite ligand allows the allylic C-H alkylation of α-alkenes with pyrazol-5-ones to give excellent enantioselectivities, wherein the chiral ligand and chiral phosphoric acid synergistically control the stereoselectivity. Notably, the palladium-phosphoramidite complexes are also efficient catalysts for allylic C-H alkylation, with a wide scope of nucleophiles. In the case of 1,4-dienes, the geometry and coordination pattern of the nucleophile are able to vary the transition states of bond-forming events and thereby determine the Z/E-, regio-, and stereoselectivities.These enantioselective allylic C-H functionalization reactions are tolerant of a wide range of nucleophiles and α-alkenes, providing a large library of optically active building blocks. Based on enantioselective intramolecular allylic C-H oxidation, the formal synthesis of (+)-diversonol is accomplished, and enantioselective intramolecular allylic C-H amination can enable concise access to letermovir. In particular, the asymmetric allylic C-H alkylation of 1,4-dienes with azlactones offers highly enantioenriched α,α-disubstituted α-amino acid derivatives that are capable of serving as key building blocks for the enantioselective synthesis of lepadiformine alkaloids. In addition, a tachykinin receptor antagonist and (-)-tanikolide are also synthesized with chiral molecules generated from the corresponding allylic C-H alkylation reactions.
Collapse
Affiliation(s)
- Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Manoharan R, Jeganmohan M. Recent Advancements in Allylic C(sp
3
)–H Functionalization of Olefins Catalyzed by Rh(III) or Ir(III) Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramasamy Manoharan
- School of Chemistry and Chemical Engineering Shandong University No. 27 Shanda South Road 250100 Jinan China
| | | |
Collapse
|
29
|
Jillella R, Raju S, Hsiao HC, Hsu DS, Chuang SC. Pd-Catalyzed Redox-Neutral C–N Coupling Reaction of Iminoquinones with Electron-Deficient Alkenes without External Oxidants: Access of Tertiary ( E)-Enamines and Application to the Synthesis of Indoles and Quinolin-4-ones. Org Lett 2020; 22:6252-6256. [DOI: 10.1021/acs.orglett.0c01929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raveendra Jillella
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Selvam Raju
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Huan-Chang Hsiao
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Day-Shin Hsu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
30
|
Palladium-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes and glycine Schiff bases. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9687-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Ji DW, Yang F, Chen BZ, Min XT, Kuai CS, Hu YC, Chen QA. Rhodium-catalyzed regio- and enantioselective allylic alkylation of pyrazol-5-ones with alkynes. Chem Commun (Camb) 2020; 56:8468-8471. [DOI: 10.1039/d0cc04002a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An atom-economical, regio- and enantioselective allylic alkylation of pyrazol-5-ones with alkynes was developed under rhodium catalysis.
Collapse
Affiliation(s)
- Ding-Wei Ji
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Fan Yang
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
- University of Chinese Academy of Sciences
| | - Chang-Sheng Kuai
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|