1
|
Ma Y, Xu T, Yuan Y, Chen Y, Xiao F, Deng GJ. Copper-Catalyzed Four-Component Domino Cyclization for the Synthesis of 2-Methylpyridines. J Org Chem 2024; 89:11994-12000. [PMID: 39153208 DOI: 10.1021/acs.joc.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
A convenient protocol for synthesis of unsymmetrical 2-methylpyridines from acetyl ketones, ammonium salts and tertiary amines is described. The construction of two C-C bonds and two C-N bonds via [2 + 2 + 1 + 1] four-component domino cyclization reaction is achieved using Cu(OTf) as catalyst in one pot. This cyclization reaction shows good selectivity and produces multisubstituted 2-methylpyridine derivatives in good yields with various functional groups.
Collapse
Affiliation(s)
- Yanfeng Ma
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Tianci Xu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yuezhou Yuan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Barbasiewicz M, Fedoryński M, Loska R, Mąkosza M. Analogy of the Reactions of Aromatic and Aliphatic π-Electrophiles with Nucleophiles. Molecules 2023; 28:molecules28104015. [PMID: 37241756 DOI: 10.3390/molecules28104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of this essay is to disclose the similarity of a great variety of reactions that proceed between nucleophiles and π-electrophiles-both aromatic and aliphatic. These reactions proceed via initial reversible addition, followed by a variety of transformations that are common for the adducts of both aliphatic and aromatic electrophiles. We hope that understanding of this analogy should help to expand the scope of the known reactions and inspire the search for new reactions that were overlooked.
Collapse
Affiliation(s)
| | - Michał Fedoryński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mieczysław Mąkosza
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Zasada A, Brześkiewicz J, Antoniak D, Bechcicka M, Loska R, Mąkosza M. Synthesis of quinoxaline derivatives via aromatic nucleophilic substitution of hydrogen. Org Biomol Chem 2023; 21:994-999. [PMID: 36515404 DOI: 10.1039/d2ob02016e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The electrophilic nature of quinoxaline has been explored in the vicarious nucleophilic substitution (VNS) of hydrogen with various carbanions as nucleophiles in an attempt to develop a general method for functionalizing the heterocyclic ring. Only poorly stabilized nitrile carbanions were found to give the VNS products. 2-Chloroquinoxaline gave products of SNAr of chlorine preferentially. A variety of quinoxaline derivatives containing cyanoalkyl, sulfonylalkyl, benzyl or ester substituents, including fluorinated ones, have been prepared in the VNS reactions with quinoxaline N-oxide.
Collapse
Affiliation(s)
- Aleksandra Zasada
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. .,Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Brześkiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Damian Antoniak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Małgorzata Bechcicka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Rafał Loska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Mieczysław Mąkosza
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
4
|
Husen S, Jha P, Singh A, Kumar R. Direct Use of Phosphonium Salts for Alkylation of p-Quinols: Formal α-Arylation of Carbonyls via a 5-Membered Betaine-Type Intermediate. Org Lett 2022; 24:6925-6929. [PMID: 36129805 DOI: 10.1021/acs.orglett.2c02638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unlike phosphonium ylides used extensively for C═C bond formation, herein we disclose the direct use of phosphonium salts for site-selective alkylation to p-quinols via a 5-membered betaine-type intermediate. This strategy provides a novel and general approach for the synthesis of α-(m-aminoaryl) esters, amides and ketones under ambient conditions. The reaction proceeds through in situ generation of P-ylide, alkylation and aromatization. Reaction is highly compatible with diverse functional phosphonium salts and amines.
Collapse
Affiliation(s)
- Saddam Husen
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Akansha Singh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Abstract
C−H methylation of sp2 and sp3 carbon centers is significant in many biological processes. Methylated drug candidates show unique properties due to the change in solubility, conformation and metabolic activities. Several photo-catalyzed, electrochemical, mechanochemical and metal-free techniques that are widely utilized strategies in medicinal chemistry for methylation of arenes and heteroarenes have been covered in this review.
Collapse
|
6
|
Liao X, Zhou Y, Ai C, Ye C, Chen G, Yan Z, Lin S. SO2F2-mediated oxidation of primary and tertiary amines with 30% aqueous H2O2 solution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Moon J, Ji HK, Ko N, Oh H, Park MS, Kim S, Ghosh P, Mishra NK, Kim IS. Site-selective and metal-free C-H nitration of biologically relevant N-heterocycles. Arch Pharm Res 2021; 44:1012-1023. [PMID: 34664211 PMCID: PMC8685193 DOI: 10.1007/s12272-021-01351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022]
Abstract
The site-selective and metal-free C-H nitration reaction of quinoxalinones and pyrazinones as biologically important N-heterocycles with t-butyl nitrite is described. A wide range of quinoxalinones were efficiently applied in this transformation, providing C7-nitrated quinoxalinones without undergoing C3-nitration. From the view of mechanistic point, the radical addition reaction exclusively occurred at the electron-rich aromatic region beyond electron-deficient N-heterocycle ring. This is a first report on the C7-H functionalization of quinoxalinones under metal-free conditions. In contrast, the nitration reaction readily takes place at the C3-position of pyrazinones. This transformation is characterized by the scale-up compatibility, mild reaction conditions, and excellent functional group tolerance. The applicability of the developed method is showcased by the selective reduction of NO2 functionality on the C7-nitrated quinoxalinone product, providing aniline derivatives. Combined mechanistic investigations aided the elucidation of a plausible reaction mechanism.
Collapse
Affiliation(s)
- Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ku Ji
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Harin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Seo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Byun Y, Moon J, An W, Mishra NK, Kim HS, Ghosh P, Kim IS. Transition-Metal-Free Alkylation and Acylation of Benzoxazinones with 1,4-Dihydropyridines. J Org Chem 2021; 86:12247-12256. [PMID: 34406002 DOI: 10.1021/acs.joc.1c01558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct functionalization of N-heterocycles is a vital transformation for the development of pharmaceuticals, functional materials, and other chemical entities. Herein, the transition-metal-free alkylation and acylation of C(sp2)-H bonds in biologically relevant 2-benzoxazinones with 1,4-dihydropyridines as readily accessible radical surrogates is described. Excellent functional group compatibility and a broad substrate scope were attained. Gram-scale reaction and transformations of the synthesized adducts via Suzuki coupling with heteroaryl boronic acids demonstrated the synthetic potential of the developed protocol.
Collapse
Affiliation(s)
- Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Liu F, Ye ZP, Hu YZ, Gao J, Zheng L, Chen K, Xiang HY, Chen XQ, Yang H. N, N, N', N'-Tetramethylethylenediamine-Enabled Photoredox-Catalyzed C-H Methylation of N-Heteroarenes. J Org Chem 2021; 86:11905-11914. [PMID: 34344150 DOI: 10.1021/acs.joc.1c01325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aiming at the valuable methylation process, readily available and inexpensive N,N,N',N'-tetramethylethylenediamine (TMEDA) was first identified as a new methyl source in photoredox-catalyzed transformation in this work. By virtue of this simple methylating reagent, a facile and practical protocol for the direct C-H methylation of N-heteroarenes was developed, featuring mild reaction conditions, broad substrate scope, and scalability. Mechanistic studies disclosed that a sequential photoredox, base-assisted proton shift, fragmentation, and tautomerization process was essentially involved.
Collapse
Affiliation(s)
- Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
10
|
An W, Lee SH, Kim D, Oh H, Kim S, Byun Y, Kim HJ, Mishra NK, Kim IS. Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis. J Org Chem 2021; 86:7579-7587. [PMID: 33949193 DOI: 10.1021/acs.joc.1c00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The site-selective modification of quinolines and their analogs has emerged as a pivotal topic in medicinal chemistry and drug discovery. Herein, we describe the rhodium(III)-catalyzed C8-alkylation of quinoline N-oxides with maleimides as alkylating agents, resulting in the formation of bioactive succinimide-containing quinoline derivatives. The reaction proceeds under mild conditions with complete functional group tolerance.
Collapse
Affiliation(s)
- Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dayoung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | - Harin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jin Kim
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Kaur R, Mandal S, Banerjee D, Kumar Yadav A. Transition Metal Free
α
−C−H Functionalization of Six Membered Heteroaromatic‐
N
‐Oxides. ChemistrySelect 2021. [DOI: 10.1002/slct.202100319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ramandeep Kaur
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| | - Sudip Mandal
- Sudip Mandal Centre of Biomedical Research (CBMR) Lucknow India
| | - Debolina Banerjee
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences Panjab University Chandigarh 160014 India
| |
Collapse
|
12
|
Choi JH, Do Kim H, Kang JY, Jeong T, Ghosh P, Kim IS. Ruthenium(
II
)‐Catalyzed CH/NH Carbonylative Cyclization of
2‐Aryl
Quinazolinones with Isocyanates as
CO
Surrogates. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Ho Choi
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hak Do Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Ju Young Kang
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Taejoo Jeong
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
13
|
Aynetdinova D, Callens MC, Hicks HB, Poh CYX, Shennan BDA, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Installing the “magic methyl” – C–H methylation in synthesis. Chem Soc Rev 2021; 50:5517-5563. [DOI: 10.1039/d0cs00973c] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following notable cases of remarkable potency increases in methylated analogues of lead compounds, this review documents the state-of-the-art in C–H methylation technology.
Collapse
Affiliation(s)
- Daniya Aynetdinova
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Mia C. Callens
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Harry B. Hicks
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Charmaine Y. X. Poh
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | - Alistair M. Boyd
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Zhong Hui Lim
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Jamie A. Leitch
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - Darren J. Dixon
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
14
|
An W, Choi SB, Kim N, Kwon NY, Ghosh P, Han SH, Mishra NK, Han S, Hong S, Kim IS. C2-Selective C–H Methylation of Heterocyclic N-Oxides with Sulfonium Ylides. Org Lett 2020; 22:9004-9009. [DOI: 10.1021/acs.orglett.0c03403] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Bin Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Namhoon Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Sangil Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Ghosh P, Kwon NY, Kim S, Han S, Lee SH, An W, Mishra NK, Han SB, Kim IS. C−H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sangil Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won An
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Soo Bong Han
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry University of Science and Technology Daejeon 34113 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
16
|
Ghosh P, Kwon NY, Kim S, Han S, Lee SH, An W, Mishra NK, Han SB, Kim IS. C−H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angew Chem Int Ed Engl 2020; 60:191-196. [DOI: 10.1002/anie.202010958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sangil Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won An
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Soo Bong Han
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry University of Science and Technology Daejeon 34113 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
17
|
Kutasevich AV, Perevalov VP, Mityanov VS. Recent Progress in Non‐Catalytic C–H Functionalization of Heterocyclic
N
‐Oxides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anton V. Kutasevich
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
| | - Valery P. Perevalov
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
| | - Vitaly S. Mityanov
- Department of Fine Organic Synthesis and Chemistry of Dyes Mendeleev University of Chemical Technology Miusskaya Sq., 9 125047 Moscow Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Pr., 47 119991 Moscow Russian Federation
| |
Collapse
|
18
|
Cho YS, Kim HD, Kim E, Han SH, Han SB, Mishra NK, Jung YH, Jeong T, Kim IS. Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III)‐Catalyzed C−H Functionalization. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yong Sun Cho
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hak Do Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Euntaek Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Soo Bong Han
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | | | - Young Hoon Jung
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Taejoo Jeong
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
19
|
Jo W, Baek SY, Hwang C, Heo J, Baik MH, Cho SH. ZnMe2-Mediated, Direct Alkylation of Electron-Deficient N-Heteroarenes with 1,1-Diborylalkanes: Scope and Mechanism. J Am Chem Soc 2020; 142:13235-13245. [DOI: 10.1021/jacs.0c06827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seung-yeol Baek
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Chiwon Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joon Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
20
|
Lee SH, Kwon NY, Lee JY, An W, Jung YH, Mishra NK, Ghosh P, Park JS, Kim IS. Transition-Metal-Free and Site-Selective Selenylation of Heterocyclic N
-Oxides in Anisole as a Green Solvent. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suk Hun Lee
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | - Ji Yoon Lee
- Department of Chemistry; Sookmyung Women's University; 04310 Seoul Republic of Korea
| | - Won An
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | - Young Hoon Jung
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | | | - Prithwish Ghosh
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| | - Jung Su Park
- Department of Chemistry; Sookmyung Women's University; 04310 Seoul Republic of Korea
| | - In Su Kim
- School of Pharmacy; Sungkyunkwan University; 16419 Suwon Republic of Korea
| |
Collapse
|
21
|
Kim D, Ghosh P, Kwon NY, Han SH, Han S, Mishra NK, Kim S, Kim IS. Deoxygenative Amination of Azine- N-oxides with Acyl Azides via [3 + 2] Cycloaddition. J Org Chem 2020; 85:2476-2485. [PMID: 31904240 DOI: 10.1021/acs.joc.9b03173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal-free deoxygenative C-H amination reaction of azine-N-oxides with acyl azides is described. The initial formation of an isocyanate from the starting acyl azide via a Curtius rearrangement can trigger a [3 + 2] dipolar cycloaddition of polar N-oxide fragments to generate the aminated azine derivative. The applicability of this method is highlighted by the late-stage and sequential amination reactions of complex bioactive compounds, including quinidine and fasudil. Moreover, the direct transformation of aminated azines into various bioactive N-heterocycles illustrates the significance of this newly developed protocol.
Collapse
Affiliation(s)
- Dongeun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sang Hoon Han
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sangil Han
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Neeraj Kumar Mishra
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Saegun Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - In Su Kim
- School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|