1
|
Zhu X, Li Y, Luo H, Li J, Hua Y, Liu G, Li L, Liu R. Propargylic Dialkyl Effect for Cyclobutene Formation through Ir(III)-Catalyzed Cycloisomerization of 1,6-Enynes. Org Lett 2024; 26:966-970. [PMID: 38270400 DOI: 10.1021/acs.orglett.3c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The propargylic dialkyl effect (PDAE) has a significant impact on the cyclization reaction of enynes, partly reflected in changing the types of products. Herein, we described the influence of the propargylic dialkyl effect on the Ir(III)-catalyzed cycloisomerization of 1,6-enynes to provide strained cyclobutenes. A series of substituted 1,6-enynes were proved to be excellent substrate candidates in the presence of [Cp*IrCl2]2 in toluene. Mechanistic investigation, based on deuterium labeling experiments and control experiments, indicated that the propargylic dialkyl effect might boost C(sp)-H activation by preventing the coordination of active iridium species to the C(sp)≡C(sp) bond of enynes. This finding contributes to the fundamental understanding of enyne cyclization reactions and offers valuable insight into the propargylic dialkyl effect.
Collapse
Affiliation(s)
- Xuanyu Zhu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Yi Li
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Hongtao Luo
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Jing Li
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Yuhui Hua
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Guohua Liu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| | - Lingling Li
- Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Liu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
2
|
Doerksen RS, Hodík T, Hu G, Huynh NO, Shuler WG, Krische MJ. Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chem Rev 2021; 121:4045-4083. [PMID: 33576620 DOI: 10.1021/acs.chemrev.0c01133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium-catalyzed cycloadditions to form five-, six-, and seven-membered rings are summarized, including applications in natural product total synthesis. Content is organized by ring size and reaction type. Coverage is limited to processes that involve formation of at least one C-C bond. Processes that are stoichiometric in ruthenium or exploit ruthenium as a Lewis acid (without intervention of organometallic intermediates), ring formations that occur through dehydrogenative condensation-reduction, σ-bond activation-initiated annulations that do not result in net reduction of bond multiplicity, and photochemically promoted ruthenium-catalyzed cycloadditions are not covered.
Collapse
Affiliation(s)
- Rosalie S Doerksen
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Guanyu Hu
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Nancy O Huynh
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - William G Shuler
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Hou H, Sun Y, Pan Y, Yu H, Han Y, Shi Y, Yan C, Zhu S. Visible-Light Mediated Diarylselenylative Cyclization of 1,6-Enynes. J Org Chem 2021; 86:1273-1280. [PMID: 33283502 DOI: 10.1021/acs.joc.0c02529] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We herein described a selenylative cyclization reaction of enynes by the utilization of diselenides as radical sources. The visible-light irradiation of the reaction mixture enables the generation of the selenium atom radical to trigger the radical addition/cyclization/selenation sequences. Both terminal alkyne and internal alkyne derived 1,6-enynes were tested and suitable for the current synthetic protocol, delivering various kinds of selenium-containing cycles in good yields.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yue Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|