1
|
Zhao Z, Zhu L, Song ZL, Qubi K, Ouyang Q, Du W, Chen YC. Nickel-Catalyzed Asymmetric (3 + 2) Annulations of Propargylic Carbonates and Vinylogous Donors via an Alkenylation Pathway. J Am Chem Soc 2024; 146:30678-30685. [PMID: 39439091 DOI: 10.1021/jacs.4c12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The transition-metal-catalyzed alkenylation strategy of propargylic alcohol derivatives provides an efficient protocol to access multifunctional products in a double-nucleophilic attack pattern. While limited relevant asymmetric examples have been reported via palladium catalysis, here we first demonstrate that a nonprecious Ni(0)-based chiral complex can efficiently promote the tandem substitution process between propargylic carbonates and N-trifluoroethyl ketimines via consecutive aza-vinylogous activations, finally accomplishing a (3 + 2) annulation reaction to afford products embedding a 4-methylene-3,4-dihydro-2H-pyrrole framework with high regio-, diastereo-, and enantiocontrol. Their assemblies with a few all-carbon-based vinylogous precursors are also successful, and enantioenriched adducts containing a 3-methylenecyclopentene scaffold are furnished effectively. The substitution patterns for both types of substrates are substantial, and an array of synthetic elaborations is conducted to deliver more versatile architectures with high application potential. In addition, density functional theory calculations and control experiments have been conducted to rationalize the catalytic pathways and regio- and enantioselectivity control.
Collapse
Affiliation(s)
- Zhi Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Zhao-Li Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Keji Qubi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
2
|
Zhang Y, Lu Y, Ju C, Zhang Z, Wang D, Wang S, Xie P, Loh TP. Photocatalytic Decarboxylative Allylation of α-Amino Acids and Peptides under Metal-Free Conditions. Org Lett 2024; 26:8121-8127. [PMID: 39282965 DOI: 10.1021/acs.orglett.4c03038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We developed an organophotoredox catalytic system to facilitate the decarboxylative allylation coupling process concerning α-amino acids and related C-terminal carboxylate peptides using Morita-Baylis-Hillman adducts as allylic precursors. This metal-free method operates under mild conditions and is compatible with various amino acids. The versatility of this protocol, particularly in chemical biology research, has been preliminarily demonstrated through the ligation of bioactive peptide chains.
Collapse
Affiliation(s)
- Yinlei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yanyu Lu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Chengyang Ju
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Dongping Wang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Shirui Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
3
|
Zheng J, Hua R, Wang YE, Lin T, Ou M, Wu Y, Shi EH, He J, Xiong D, Mao J. Synthesis of Homoallylamines Enabled by Cobalt or Palladium Catalyzed Allylic Substitution of Azaarylmethylamines. Org Lett 2024; 26:2982-2986. [PMID: 38602341 DOI: 10.1021/acs.orglett.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Pd(OAc)2/Nixantphos or CoI2/Nixantphos catalyzed allylic substitutions with weakly acidic C(sp)3-H bonds of azaarylmethylamines are described. This method facilitates access to various kinds of heteroaryl rings containing homoallylamines (39 examples, 30-98% yields) with excellent functional group tolerance and diastereoselectivity. Compared with the Pd/Nixantphos complex, the Co/Nixantphos catalysis could obtain the cyclic products with good to excellent diastereoselectivities. Importantly, the CoI2/(R,R)-Me-Duphos catalyzed reactions exhibit moderate enantioselectivity. Additionally, the scalability of this transformation is successfully demonstrated.
Collapse
Affiliation(s)
- Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Rui Hua
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Tingzhi Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Mingjie Ou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - En-Hao Shi
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jing He
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
4
|
Griffiths CM, Franckevičius V. The Catalytic Asymmetric Allylic Alkylation of Acyclic Enolates for the Construction of Quaternary and Tetrasubstituted Stereogenic Centres. Chemistry 2024; 30:e202304289. [PMID: 38284328 DOI: 10.1002/chem.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
To facilitate the discovery and development of new pharmaceuticals, the demand for novel stereofunctionalised building blocks has never been greater. Whilst molecules bearing quaternary and tetrasubstituted stereogenic centres are ideally suited to explore untapped areas of chemical space, the asymmetric construction ofsterically congested carbon centres remains a longstanding challenge in organic synthesis. The enantioselective assembly of acyclic stereogenic centres is even more demanding due to the need to restrict a much wider range of geometries and conformations of the intermediates involved. In this context, the catalytic asymmetric allylicalkylation (AAA) of acyclic prochiral nucleophiles, namely enolates, has become an indispensable tool to access a range of linearα-quaternary andα-tetrasubstituted carbonyl compounds. However, unlike the AAA of cyclic enolates with a fixed enolate geometry, to achieve high levels of stereocontrol in the AAA of acyclic enolates, the stereoselectivity of enolisation must be considered. The aim of this review is to offer acomprehensivediscussion of catalytic AAA reactions of acyclic prochiral enolates and their analogues to generate congested quaternary and tetrasubstituted chiral centres using metal, non-metal and dual catalysis, with particular focus given to the control of enolate geometry and its impact on the stereochemical outcome of the reaction.
Collapse
|
5
|
Guo L, Zhao W, Gao Y, Wu M, Chen S. Regio- and Stereoselective Iodoamination of Ferrocene-Containing Allenylphosphonates: Synthesis of Multifunctional Tetrasubstituted Allylic Amines and Allylic Azides. J Org Chem 2024; 89:1956-1966. [PMID: 38268404 DOI: 10.1021/acs.joc.3c02686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A general and practical methodology for the regio- and stereoselective synthesis of multifunctional tetrasubstituted allylic amines and azides based on iodoamination of ferrocene-containing allenylphosphonates with anilines and sodium azide is described. A tetrasubstituted olefin moiety, as well as an iodine atom, a phosphonate, and a ferrocene group, are installed to the allylic amine motif simultaneously in moderate to good yields.
Collapse
Affiliation(s)
- Le Guo
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
- College of Chemical Engineering, Ordos Institute of Technology, Ordos 017000, People's Republic of China
| | - Wanrong Zhao
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanpeng Gao
- College of Chemical Engineering, Ordos Institute of Technology, Ordos 017000, People's Republic of China
| | - Meimei Wu
- College of Chemical Engineering, Ordos Institute of Technology, Ordos 017000, People's Republic of China
| | - Shufeng Chen
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
6
|
Li J, Gong S, Gao S, Chen J, Chen WW, Zhao B. Asymmetric α-C(sp 3)-H allylic alkylation of primary alkylamines by synergistic Ir/ketone catalysis. Nat Commun 2024; 15:939. [PMID: 38296941 PMCID: PMC10830461 DOI: 10.1038/s41467-024-45131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Primary alkyl amines are highly reactive in N-nucleophilic reactions with electrophiles. However, their α-C-H bonds are unreactive towards electrophiles due to their extremely low acidity (pKa ~57). Nonetheless, 1,8-diazafluoren-9-one (DFO) can activate primary alkyl amines by increasing the acidity of the α-amino C-H bonds by up to 1044 times. This makes the α-amino C-H bonds acidic enough to be deprotonated under mild conditions. By combining DFO with an iridium catalyst, direct asymmetric α-C-H alkylation of NH2-unprotected primary alkyl amines with allylic carbonates has been achieved. This reaction produces a wide range of chiral homoallylic amines with high enantiopurities. The approach has successfully switched the reactivity between primary alkyl amines and allylic carbonates from intrinsic allylic amination to the α-C-H alkylation, enabling the construction of pharmaceutically significant chiral homoallylic amines from readily available primary alkyl amines in a single step.
Collapse
Affiliation(s)
- Jianyu Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Sheng Gong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Shaolun Gao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Jianfeng Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China.
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
7
|
Xu Y, Wang J, Deng GJ, Shao W. Recent advances in the synthesis of chiral α-tertiary amines via transition-metal catalysis. Chem Commun (Camb) 2023; 59:4099-4114. [PMID: 36919669 DOI: 10.1039/d3cc00439b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The significance of chiral α-tertiary amines in medicinal chemistry and drug development has been unquestionably established in the last few decades. α-Tertiary amines are attractive structural motifs for natural products, bioactive molecules and pharmaceuticals and are preclinical candidates. Their syntheses have been the focus of intensive research, and the development of new methods has continued to attract more and more attention. In this review, we present the progress in the last decade in the development of synthetic methods for the assembly of chiral ATAs via transition-metal catalysis. To date, the effective approaches in this area could be categorized into three strategies: enantioselective direct and indirect Mannich addition to ketimines; umpolung asymmetric alkylation of imine derivatives; and asymmetric C-N cross-coupling of tertiary alkyl electrophiles. Several related developing strategies for the synthesis of ATAs, such as hydroamination of alkenes, HAT amination approaches and the C-C coupling of α-aminoalkyl fragments, are also described in this article. These strategies have emerged as attractive C-C and C-N bond-forming protocols for enantioselective construction of chiral α-tertiary amines, and to some extent are complementary to each other, showing the prospect of application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Yongzhuo Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Jiajia Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
8
|
Nilova A, Mannchen MD, Noel AN, Semenova E, Grenning AJ. Vicinal stereocenters via asymmetric allylic alkylation and Cope rearrangement: a straightforward route to functionally and stereochemically rich heterocycles. Chem Sci 2023; 14:2755-2762. [PMID: 36908968 PMCID: PMC9993902 DOI: 10.1039/d2sc07021a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
An asymmetric allylic alkylation/Cope rearrangement (AAA/[3,3]) capable of stereoselectively constructing vicinal stereocenters has been developed. Strategically integrated 4-methylation on the 3,3-dicyano-1,5-diene controls stereoselectivity and drives Cope rearrangement equilibrium in the forward direction. The AAA/[3,3] sequence rapidly converts abundant achiral and racemic starting materials into valuable (hetero)cycloalkane building blocks bearing significant functional and stereochemical complexity, highlighting the value of (hetero)cyclohexylidenemalononitriles as launching points for complex heterocycle synthesis. On this line, the resulting alkylidenemalononitrile moiety can be readily converted into amides via Hayashi-Lear amidation to ultimately yield amido-piperidines, tropanes, and related scaffolds with 3-5 stereocenters and drug-like functionality.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Michael D Mannchen
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Abdias N Noel
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Evgeniya Semenova
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| |
Collapse
|
9
|
Liu Y, Liu X, Feng X. Recent advances in metal-catalysed asymmetric sigmatropic rearrangements. Chem Sci 2022; 13:12290-12308. [PMID: 36382273 PMCID: PMC9629009 DOI: 10.1039/d2sc03806d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 09/22/2023] Open
Abstract
Asymmetric sigmatropic rearrangement is a powerful organic transformation via substrate-reorganization to efficiently increase molecular complexity from readily accessible starting materials. In particular, a high level of diastereo- and enantioselectivity can be readily accessed through well-defined and predictable transition states in [3,3], [2,3]-sigmatropic rearrangements, which have been widely applied in the synthesis of various chiral building blocks, natural products, and pharmaceuticals. In recent years, catalytic asymmetric sigmatropic rearrangements involving chiral metal complexes to induce stereocontrol have been intensively studied. This review presents an overview of metal-catalysed enantioselective versions of sigmatropic rearrangements in the past two decades, mainly focusing on [3,3], [2,3], and [1,3]-rearrangements, to show the development of substrate design, new catalyst exploitation, and novel cascade processes. In addition, their application in the asymmetric synthesis of complex natural products is also exemplified.
Collapse
Affiliation(s)
- Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
10
|
Yang L, Shang W, Zhang L, Zhang X. Preparation of Chiral γ-Secondary Amino Alcohols via Ni-Catalyzed Asymmetric Reductive Coupling of 2-Aza-butadiene with Aldehydes. Org Lett 2022; 24:7763-7768. [PMID: 36255252 DOI: 10.1021/acs.orglett.2c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first Ni-catalyzed asymmetric reductive coupling of 2-aza-butadiene with aldehydes was achieved to synthesize chiral γ-secondary amino alcohols. This transformation features good enantioselectivity and tolerance to various functional groups, which may serve as a complementary method to previously reported noble-metal-catalyzed protocols. Through competition reaction, 2-aza-butadiene was proved to be a more reactive coupling component than its full-carbon analogue, 1,3-butadiene. Notably, this reaction delivers β-siloxyl imine, an aza-aldol-type product which is difficult to access by conventional methods.
Collapse
Affiliation(s)
- Lei Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 Renmin Nan Road, Chengdu 610041, China
| | - Weidong Shang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 Renmin Nan Road, Chengdu 610041, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 Renmin Nan Road, Chengdu 610041, China
| | - Xia Zhang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17 Renmin Nan Road, Chengdu 610041, China
| |
Collapse
|
11
|
Yuan WC, Yang L, Zhao JQ, Du HY, Wang ZH, You Y, Zhang YP, Liu J, Zhang W, Zhou MQ. Copper-Catalyzed Umpolung of N-2,2,2-Trifluoroethylisatin Ketimines for the Enantioselective 1,3-Dipolar Cycloaddition with Benzo[ b]thiophene Sulfones. Org Lett 2022; 24:4603-4608. [PMID: 35704767 DOI: 10.1021/acs.orglett.2c01716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed umpolung of N-2,2,2-trifluoroethylisatin ketimines for the enantioselective 1,3-dipolar cycloaddition with benzo[b]thiophene sulfones was developed. Using a catalyst system consisting of an (S,Sp)-tBu-Phosferrox ligand, Cu(OTf)2, and Cs2CO3, a range of pentacyclic spirooxindoles containing pyrrolidine and benzo[b]sulfolane subunits were obtained in high efficiency with excellent regio-, diastereo-, and enantioselectivites under mild conditions. The practicality and versatility of the reaction were also demonstrated.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Hong-Yan Du
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jiabin Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenjing Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
12
|
Enantioselective organocatalytic synthesis of α-allylated dihydroquinolines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Abstract
Carbon–carbon bond formation by [3,3]-sigmatropic rearrangement is a fundamental and powerful method that has been used to build organic molecules for a long time. Initially, Claisen and Cope rearrangements proceeded at high temperatures with limited scopes. By introducing catalytic systems, highly functionalized substrates have become accessible for forming complex structures under mild conditions, and asymmetric synthesis can be achieved by using chiral catalytic systems. This review describes recent breakthroughs in catalytic [3,3]-sigmatropic rearrangements since 2016. Detailed reaction mechanisms are discussed to enable an understanding of the reactivity and selectivity of the reactions. Finally, this review is inspires the development of new cascade reaction pathways employing catalytic [3,3]-sigmatropic rearrangement as related methodologies for the synthesis of complex functional molecules.
Collapse
|
14
|
Base-mediated allylation of N-2,2,2-trifluoroethylisatin ketimines and its application in aza-Prins reactions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wei L, Wang CJ. Recent advances in catalytic asymmetric aza-Cope rearrangement. Chem Commun (Camb) 2021; 57:10469-10483. [PMID: 34550132 DOI: 10.1039/d1cc04387k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aza-Cope rearrangement, as one of the fundamental reactions for C-C and C-N bond formation, has been extensively utilized for the rapid construction of synthetically challenging organic molecules. Despite significant achievements having been made in the past 80 years, catalytic enantioselective versions still remain a challenge, mainly due to the inherent nature of the reversibility of aza-Cope rearrangement. Recently, owing to the intensive development of asymmetric catalysis strategies, various chiral organocatalysts and transition-metal catalysts have been successfully applied to control the stereoselectivity of aza-Cope rearrangement, and remarkable advances have been achieved. This review highlights recent progress relating to catalytic asymmetric aza-Cope rearrangement and covers important features of these studies, including catalytic system design, mechanistic insights, stereochemistry analysis, and synthetic applications.
Collapse
Affiliation(s)
- Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 230021, China
| |
Collapse
|
16
|
Shen MH, Li C, Xu QS, Guo B, Wang R, Liu X, Xu HD, Xu D. Allylation and alkylation of oxindoleketimines via imine umpolung strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Deng G, Duan S, Wang J, Chen Z, Liu T, Chen W, Zhang H, Yang X, Walsh PJ. Transition-metal-free allylation of 2-azaallyls with allyl ethers through polar and radical mechanisms. Nat Commun 2021; 12:3860. [PMID: 34162867 PMCID: PMC8222226 DOI: 10.1038/s41467-021-24027-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Allylation of nucleophiles with highly reactive electrophiles like allyl halides can be conducted without metal catalysts. Less reactive electrophiles, such as allyl esters and carbonates, usually require a transition metal catalyst to facilitate the allylation. Herein, we report a unique transition-metal-free allylation strategy with allyl ether electrophiles. Reaction of a host of allyl ethers with 2-azaallyl anions delivers valuable homoallylic amine derivatives (up to 92%), which are significant in the pharmaceutical industry. Interestingly, no deprotonative isomerization or cyclization of the products were observed. The potential synthetic utility and ease of operation is demonstrated by a gram scale telescoped preparation of a homoallylic amine. In addition, mechanistic studies provide insight into these C(sp3)-C(sp3) bond-forming reactions.
Collapse
Affiliation(s)
- Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Jing Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Zhuo Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Tongqi Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China.
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China.
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Nakagawa Y, Yamaguchi K, Hosokawa S. Iodide-Mediated [3 + 2]-Cycloaddition Reaction with N-Tosylaziridines and α,β-Unsaturated Ketones. J Org Chem 2021; 86:7787-7796. [PMID: 34032429 DOI: 10.1021/acs.joc.1c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [3 + 2]-cycloaddition reaction between N-tosylaziridines and α,β-unsaturated ketones was promoted with lithium iodide. The reaction proceeded under mild conditions to provide N-tosylpyrrolidines. Quaternary carbon-possessing 3,3-disubstituted pyrrolidines including spiro compounds were afforded in high yields. A simple procedure with easy to handle reagents makes this reaction concise. The intramolecular version of this reaction was applied to synthesize tropane skeletons.
Collapse
Affiliation(s)
- Yuya Nakagawa
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keigo Yamaguchi
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Seijiro Hosokawa
- Department of Applied Chemistry, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
19
|
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021; 11:712. [PMID: 34745653 PMCID: PMC8570560 DOI: 10.3390/catal11060712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
Collapse
Affiliation(s)
- Changgong Xu
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Carlyn Reep
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Jamielyn Jarvis
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Brandon Naumann
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Burjor Captain
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Norito Takenaka
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| |
Collapse
|
20
|
Wan LQ, Cao JG, Niu D, Zhang X. Cobalt-Catalyzed Umpolung Alkylation of Imines To Generate α-Branched Aliphatic Amines. Org Lett 2021; 23:3818-3822. [PMID: 33974795 DOI: 10.1021/acs.orglett.1c00835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here we report a general and mild approach to prepare α-branched aliphatic amines from imines. This method capitalizes on a cobalt-catalyzed umpolung alkylation of imines, employs easily available reaction partners, and demonstrates a broad substrate scope. Mechanistic studies suggest this transformation occurs by a radical pathway.
Collapse
Affiliation(s)
- Li-Qiang Wan
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Jin-Ge Cao
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
21
|
Hussain Y, Chauhan P. Catalytic asymmetric umpolung reactions of imines via 2-azaallyl anion intermediates. Org Biomol Chem 2021; 19:4193-4212. [PMID: 33870977 DOI: 10.1039/d1ob00409c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The imine umpolung is a relatively new and interesting strategy, especially in catalytic asymmetric synthesis. A significant development in organo- and transition metal-catalyzed umpolung of imines took place only in the recently concluded decade. A majority of the reports on the asymmetric umpolung of imines involve the initial generation of 2-azaallyl anion intermediates with the chiral catalysts, which serve as a significant driving force for the umpolung addition/substitution reactions. A variety of organocatalysts such as bifunctional cinchona alkaloids including squaramides and thioureas, chiral BINOL derived phosphoric acids, phase transfer catalysts (PTCs), phosphines, and transition metal-complexes of iridium, copper and palladium have been employed to achieve the excellent level of asymmetric induction in such types of umpolung reactions. The asymmetric imine umpolung strategy has been applied successfully to synthesize synthetic amino-acid derivatives and other useful chiral amines, including drugs and potentially bioactive molecules. This review summarizes all the significant recent development in catalytic umpolung reactions of imines involving a 2-azaallyl anion intermediate.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH 44, Nagrota Bypass, Jammu, J&K 181221, India.
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH 44, Nagrota Bypass, Jammu, J&K 181221, India.
| |
Collapse
|
22
|
Ronchi E, Paradine SM, Jacobsen EN. Enantioselective, Catalytic Multicomponent Synthesis of Homoallylic Amines Enabled by Hydrogen-Bonding and Dispersive Interactions. J Am Chem Soc 2021; 143:7272-7278. [PMID: 33949857 PMCID: PMC8547772 DOI: 10.1021/jacs.1c03024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a one-step catalytic, enantioselective method for the preparation of homoallylic N-Boc amines directly from acetals. Reactive iminium ion intermediates are generated in situ through the combination of an acetal, a chiral thiourea catalyst, trialkylsilyl triflate, and N-Boc carbamate and are subsequently trapped by a variety of allylsilane nucleophiles. No homoallylic ether byproducts are detected, consistent with allylation of the iminium intermediate being highly favored over allylation of the intermediate oxocarbenium ion. Acetals derived from aromatic aldehydes possessing a variety of functional groups and substitution patterns yield homoallylic amines with excellent levels of enantiomeric enrichment. Experimental and computational data are consistent with an anchoring hydrogen-bond interaction between the protioiminium ion and the amide of the catalyst in the enantiodetermining transition state, and with stereodifferentiation achieved through specific noncovalent interactions (NCIs) with the catalyst pyrenyl moiety. Evidence is provided that the key NCI in the major pathway is a π-stacking interaction, contrasting with the cation-π interactions invoked in previously studied reactions promoted by the same family of aryl-pyrrolidino-H-bond-donor catalysts.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
23
|
Wu X, Ren J, Shao Z, Yang X, Qian D. Transition-Metal-Catalyzed Asymmetric Couplings of α-Aminoalkyl Fragments to Access Chiral Alkylamines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|
24
|
Mitra S, Mukherjee S. Iridium-Catalyzed Asymmetric Allylic Alkylation of Deconjugated Butyrolactams. Org Lett 2021; 23:3021-3026. [PMID: 33821654 DOI: 10.1021/acs.orglett.1c00697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Compared with the ever-growing list of nonprochiral nucleophiles in Ir-catalyzed asymmetric allylic substitution reactions, prochiral nucleophiles are less studied. We present a new prochiral nucleophile, namely, deconjugated butyrolactam, for Ir-catalyzed asymmetric allylic alkylation (AAA). This reaction provides access to α-allyl deconjugated butyrolactams with a moderate to good dr and an excellent er. This is the first AAA reaction of deconjugated butyrolactams. Allyl transposition through Cope rearrangement appears to proceed stereospecifically to form γ-allyl conjugated butyrolactams.
Collapse
Affiliation(s)
- Sankash Mitra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Terashima K, Kawasaki-Takasuka T, Yamazaki T. Construction of fully substituted carbon centers containing a heteroatom and a CF 3 group via in situ generated p-quinone methides. Org Biomol Chem 2021; 19:1305-1314. [PMID: 33503080 DOI: 10.1039/d0ob02469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1,6-Conjugate additions of in situ generated δ-CF3-δ-substituted p-quinone methides have been achieved with a variety of heteronucleophiles under mild conditions, which led to facile and practical construction of fully substituted carbon centers including a heteroatom and a CF3 group. In particular, it was revealed that some amines themselves worked for efficient cleavage of the TBS protective group, and addition of a catalytic amount of an appropriate Brønsted acid was found to sometimes improve the progress of the desired process.
Collapse
Affiliation(s)
- Kyu Terashima
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| | - Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Japan.
| |
Collapse
|
26
|
Duan S, Deng G, Zi Y, Wu X, Tian X, Liu Z, Li M, Zhang H, Yang X, Walsh PJ. Nickel-catalyzed enantioselective vinylation of aryl 2-azaallyl anions. Chem Sci 2021; 12:6406-6412. [PMID: 34084440 PMCID: PMC8115067 DOI: 10.1039/d1sc00972a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A unique enantioselective nickel-catalyzed vinylation of 2-azaallyl anions is advanced for the first time. This method affords diverse vinyl aryl methyl amines with high enantioselectivities, which are frequently occurring scaffolds in natural products and medications. This C-H functionalization method can also be extended to the synthesis of enantioenriched 1,3-diamine derivatives by employing suitably elaborated vinyl bromides. Key to the success of this process is the identification of a Ni/chiraphos catalyst system and a less reducing 2-azaallyl anion, all of which favor an anionic vinylation route over a background radical reaction. A telescoped gram scale synthesis and a product derivatization study confirmed the scalability and synthetic potential of this method.
Collapse
Affiliation(s)
- Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xun Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA USA
| |
Collapse
|
27
|
Mou ZD, Zhang X, Niu D. Catalytic asymmetric umpolung reaction of imines to synthesize isoindolinones and tetrahydroisoquinolines. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
28
|
Sun Z, Zhang C, Chen L, Xie H, Liu B, Liu D. Recent Advances in Catalytic Asymmetric Reactions Involving Trifluoroethyl Ketimines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202011005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Yakura T, Tanaka E, Okada M, Hirosawa C, Noda N, Fujiwara T. Stereoselective Alkylation of Oxathiazinane N,O-Ketals for the Construction of Aza-Quaternary Carbon Centers. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Onyeagusi CI, Malcolmson SJ. Strategies for the Catalytic Enantioselective Synthesis of α-Trifluoromethyl Amines. ACS Catal 2020; 10:12507-12536. [PMID: 34306806 PMCID: PMC8302206 DOI: 10.1021/acscatal.0c03569] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The exploitation of the α-trifluoromethylamino group as an amide surrogate in peptidomimetics and drug candidates has been on the rise. In a large number of these cases, this moiety bears stereochemistry with the stereochemical identity having important consequences on numerous molecular properties, such as the potency of the compound. Yet, the majority of stereoselective syntheses of α-CF3 amines rely on diastereoselective couplings with chiral reagents. Concurrent with the rapid expansion of fluorine into pharmaceuticals has been the development of catalytic enantioselective means of preparing α-trifluoromethyl amines. In this work, we outline the strategies that have been employed for accessing these enantioenriched amines, including normal polarity approaches and several recent developments in imine umpolung transformations.
Collapse
Affiliation(s)
- Chibueze I Onyeagusi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
31
|
Dong WW, Li YN, Chang X, Shen C, Wang CJ. Chiral Ugi-Type Amines: Practical Synthesis, Ligand Development, and Asymmetric Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wu-Wei Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi-Nan Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Sun XS, Wang XH, Tao HY, Wei L, Wang CJ. Catalytic asymmetric synthesis of quaternary trifluoromethyl α- to ε-amino acid derivatives via umpolung allylation/2-aza-Cope rearrangement. Chem Sci 2020; 11:10984-10990. [PMID: 34094346 PMCID: PMC8162408 DOI: 10.1039/d0sc04685j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we developed an efficient Ir-catalyzed cascade umpolung allylation/2-aza-Cope rearrangement of tertiary α-trifluoromethyl α-amino acid derivatives for the preparation of a variety of quaternary α-trifluoromethyl α-amino acids in high yields with excellent enantioselectivities. The umpolung reactivity empowered by the activation of the key isatin-ketoimine moiety obviates the intractable enantioselectivity control in Pd-catalyzed asymmetric linear α-allylation. In combination with quasi parallel kinetic resolution or kinetic resolution, the generality of this method is further demonstrated by the first preparation of enantioenriched quaternary trifluoromethyl β-, γ-, δ- and ε-amino acid derivatives.
Collapse
Affiliation(s)
- Xi-Shang Sun
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xing-Heng Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Hai-Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
33
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N‐Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C−C, C−B, C−H, and C−Si Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Yuebiao Zhou
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ying Shi
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - M. Kevin Brown
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Hao Wu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
34
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds. Angew Chem Int Ed Engl 2020; 59:21304-21359. [PMID: 32364640 DOI: 10.1002/anie.202003755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - M Kevin Brown
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Hao Wu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
35
|
Zhou Y, Zhao ZN, Zhang YL, Liu J, Yuan Q, Schneider U, Huang YY. Brønsted Acid-Catalyzed General Petasis Allylation and Isoprenylation of Unactivated Ketones. Chemistry 2020; 26:10259-10264. [PMID: 32432354 DOI: 10.1002/chem.202001594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/19/2020] [Indexed: 11/09/2022]
Abstract
Brønsted acid-catalyzed general Petasis allylation and isoprenylation of unactivated ketones were developed by using o-hydroxyaniline and the corresponding pinacolyl boronic esters. This robust methodology provided access to a broad variety of quaternary homoallylic amines and dienyl amines in high yields, proved to be applicable to a gram-scale synthesis, and allowed the synthesis of a potentially bioactive quaternary homoallylic aminodiol.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhen-Ni Zhao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yu-Long Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Quan Yuan
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Uwe Schneider
- EaStCHEM School of Chemistry, The University of Edinburgh, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Yi-Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
36
|
Wang W, Xiong Q, Gong L, Wang Y, Liu J, Lan Y, Zhang X. Regio- and Enantioselective Palladium-Catalyzed Asymmetric Allylation of N-Fluorenyl Trifluoromethyl Imine. Org Lett 2020; 22:5479-5485. [PMID: 32602723 DOI: 10.1021/acs.orglett.0c01836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A palladium-catalyzed asymmetric allylation of N-fluorenyl trifluoromethyl imine with allylic acetates is disclosed. This method provides scalable and efficient access to polysubstituted chiral α-trifluoromethyl amines bearing two adjacent stereocenters and one allyl group in high yields with excellent regio-, diastereo-, and enantioselectivity. Importantly, this method also provides a powerful strategy for the synthesis of both regioisomeric products and the regioselectivity is controlled by the chiral catalysts and optically active substrates.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.,Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province/College of Chemistry & Chemical Engineering, China West Normal University, Nanchong 637009, P.R. China
| | - Qin Xiong
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China.,School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P.R. China
| | - Liang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yingwei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China.,School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P.R. China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
37
|
Fager DC, Morrison RJ, Hoveyda AH. Regio- and Enantioselective Synthesis of Trifluoromethyl-Substituted Homoallylic α-Tertiary NH 2 -Amines by Reactions Facilitated by a Threonine-Based Boron-Containing Catalyst. Angew Chem Int Ed Engl 2020; 59:11448-11455. [PMID: 32219997 DOI: 10.1002/anie.202001184] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Indexed: 12/20/2022]
Abstract
A method for catalytic regio- and enantioselective synthesis of trifluoromethyl-substituted and aryl-, heteroaryl-, alkenyl-, and alkynyl-substituted homoallylic α-tertiary NH2 -amines is introduced. Easy-to-synthesize and robust N-silyl ketimines are converted to NH-ketimines in situ, which then react with a Z-allyl boronate. Transformations are promoted by a readily accessible l-threonine-derived aminophenol-based boryl catalyst, affording the desired products in up to 91 % yield, >98:2 α:γ selectivity, >98:2 Z:E selectivity, and >99:1 enantiomeric ratio. A commercially available aminophenol may be used, and allyl boronates, which may contain an alkyl-, a chloro-, or a bromo-substituted Z-alkene, can either be purchased or prepared by catalytic stereoretentive cross-metathesis. What is more, Z-trisubstituted allyl boronates may be used. Various chemo-, regio-, and diastereoselective transformations of the α-tertiary homoallylic NH2 -amine products highlight the utility of the approach; this includes diastereo- and regioselective epoxide formation/trichloroacetic acid cleavage to generate differentiated diol derivatives.
Collapse
Affiliation(s)
- Diana C Fager
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
38
|
Fager DC, Morrison RJ, Hoveyda AH. Regio‐ and Enantioselective Synthesis of Trifluoromethyl‐Substituted Homoallylic α‐Tertiary NH
2
‐Amines by Reactions Facilitated by a Threonine‐Based Boron‐Containing Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Diana C. Fager
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ryan J. Morrison
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
39
|
Wang R, Shen C, Cheng X, Wang Z, Tao H, Dong X, Wang C. Sequential
Ir‐Catalyzed
Allylation/
2‐aza‐Cope
Rearrangement Strategy for the Construction of Chiral Homoallylic Amines
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ruo‐Qing Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei 430072 China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei 430072 China
| | - Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei 430072 China
| | - Zuo‐Fei Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei 430072 China
| | - Hai‐Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei 430072 China
| | - Xiu‐Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei 430072 China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 230021 China
| |
Collapse
|
40
|
Onyeagusi CI, Shao X, Malcolmson SJ. Enantio- and Diastereoselective Synthesis of Homoallylic α-Trifluoromethyl Amines by Catalytic Hydroalkylation of Dienes. Org Lett 2020; 22:1681-1685. [PMID: 32013445 PMCID: PMC7079280 DOI: 10.1021/acs.orglett.0c00342] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe a strategy for the enantio- and diastereoselective synthesis of homoallylic α-trifluoromethyl amines by the catalytic hydroalkylation of terminal dienes. Trifluoromethyl-substituted isatin-derived azadienolate nucleophiles undergo γ-selective alkylation with a Pd-DTBM-SEGPHOS catalyst, which additionally promotes regioselective addition to the diene and delivers products in up to 86% yield, 10:1 dr, and 97.5:2.5 er.
Collapse
Affiliation(s)
- Chibueze I Onyeagusi
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Xinxin Shao
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Steven J Malcolmson
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
41
|
Sun XS, Ou-Yang Q, Xu SM, Wang XH, Tao HY, Chung LW, Wang CJ. Asymmetric synthesis of quaternary α-trifluoromethyl α-amino acids by Ir-catalyzed allylation followed by kinetic resolution. Chem Commun (Camb) 2020; 56:3333-3336. [DOI: 10.1039/d0cc00845a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Facile access to quaternary α-trifluoromethyl α-amino acids has been developed. This sequential reaction involves an Ir-catalyzed asymmetric allylation of α-trifluoromethyl aldimine esters followed by an unprecedented kinetic resolution.
Collapse
Affiliation(s)
- Xi-Shang Sun
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
- State Key Laboratory of Organometallic Chemistry
| | - Qiu Ou-Yang
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Shi-Ming Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Xing-Heng Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Lung Wa Chung
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
42
|
Wei L, Xiao L, Wang Z, Tao H, Wang C. Ir/Phase‐Transfer‐Catalysis Cooperatively Catalyzed Asymmetric Cascade Allylation/2‐aza‐Cope Rearrangement: An Efficient Route to Homoallylic Amines from Aldimine Esters
†. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liang Wei
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
| | - Lu Xiao
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
| | - Zuo‐Fei Wang
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
| | - Hai‐Yan Tao
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
| | - Chun‐Jiang Wang
- College of Chemistry and Molecular SciencesWuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
43
|
Winter M, Kim H, Waser M. Pd-Catalyzed Allylation of Imines to Access α-CF 3-Substituted α-Amino Acid Derivatives. European J Org Chem 2019; 2019:7122-7127. [PMID: 31798337 PMCID: PMC6887540 DOI: 10.1002/ejoc.201901272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 01/06/2023]
Abstract
We herein report a high yielding protocol for the direct α-allylation of easily accessible trifluoropyruvate-derived imines using Pd-catalysis. The reaction gives access to a variety of different α-allylated-α-CF3-amino acids in a straightforward manner, starting from commercially available trifluoropyruvate. We also provide a proof-of-concept for an enantioselective protocol (up to er = 75:25) by using chiral phosphane ligands.
Collapse
Affiliation(s)
- Michael Winter
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Hyunwoo Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology291 Daehak‐ro34141DaejeonYuseong‐guRepublic of Korea
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|