1
|
Hung HT, Bai R, Lee SH, Karmakar I, Lee CF. Cesium Carbonate-Catalyzed Oxidative Cross-Dehydrogenative Thiolation of Phosphonothioates. J Org Chem 2025. [PMID: 39912350 DOI: 10.1021/acs.joc.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Herein, we report an aerobic oxidative cross-dehydrogenative coupling (CDC) reaction between thiols and phosphonothioates. The reactions were conducted under mild and transition-metal-free conditions in the presence of air. Not only aryl thiols but also alkyl thiols were successfully coupled with phosphonothioates to form the corresponding phosphorodithioates in good to excellent yields.
Collapse
Affiliation(s)
- Hsiu-Te Hung
- Department of Chemistry, National Chung Hsing University, Taichung-402202, Taiwan 402, Republic of China
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung-402202, Taiwan 402, Republic of China
| | - Sung-Hung Lee
- Department of Chemistry, National Chung Hsing University, Taichung-402202, Taiwan 402, Republic of China
| | - Indrajit Karmakar
- Department of Chemistry, National Chung Hsing University, Taichung-402202, Taiwan 402, Republic of China
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung-402202, Taiwan 402, Republic of China
- i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung-402202, Taiwan 402, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung-402202, Taiwan 402, Republic of China
| |
Collapse
|
2
|
Yang LH, Meng ND, Tang L, Chen L, Tang SS, Xie LY. Visible-Light-Induced Phosphorothioation of Alkenyl Sulfonium Salts with S 8 and H-Phosphonates. J Org Chem 2025. [PMID: 39904727 DOI: 10.1021/acs.joc.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
An efficient and practical method for synthesizing vinyl phosphorothioates has been demonstrated through a visible-light-induced three-component reaction of alkenyl sulfonium salts, S8, and H-phosphonates. This method facilitates the synthesis of a diverse range of vinyl phosphorothioates with a wide substrate scope and functional group tolerance. Preliminary mechanistic studies suggest that the reaction involves a phosphorothioate radical-triggered process.
Collapse
Affiliation(s)
- Li-Hua Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ni-Dan Meng
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Li Tang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Lin Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Shan-Shan Tang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
3
|
Chen DP, Zhou ZZ, Yang CH, Li M, Zhang Y, Li SX, Gao F, Ma W, Wang XC, Quan ZJ. Alkoxylation and Phosphorylation of Pyrimidine Disulfides: Green Synthesis of Alkoxypyrimidine Thioethers and Pyrimidine Phosphorothioates. J Org Chem 2025. [PMID: 39902783 DOI: 10.1021/acs.joc.4c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
This paper addresses a novel, green, and sustainable method to construct new C-S and P-S bonds by cleaving the S-S bond in pyrimidine disulfide under various conditions. The first alkoxylation and phosphorylation of pyrimidine disulfide are effectively accomplished by this approach. Compared to the methods reported, this approach provides more benefits, including the utilization of eco-friendly solvents, straightforward procedure, mild reaction conditions, high atomic efficiency, and a broad range of applicable substrates. As a result, we were able to synthesize a variety of pyrimidine phosphorothioate lipids with potential applications. Furthermore, a series of control experiments as well as theoretical calculations are performed in this work to produce deeper insights of the transfer mechanism.
Collapse
Affiliation(s)
- Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Zhao-Zhen Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Chun-Hong Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Yang Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Shun-Xi Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Fan Gao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Wen Ma
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
4
|
Guo G, Ma J, Dong Y, Wu Q, Lv J, Shi Y, Yang D. Visible Light/Copper Catalysis-Enabled Arylation and Alkenylation of Phosphorothioates via Site-Selective C-H Thianthrenation. Org Lett 2024; 26:8382-8388. [PMID: 39316043 DOI: 10.1021/acs.orglett.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
An efficient visible light/copper-enabled arylation and alkenylation of phosphorothioates with thianthrenium salts via a C(sp2)-S cross-coupling reaction have been demonstrated. This strategy uses aryl/alkenyl thianthrenium salts as new electrophilic reagents, which can be easily prepared by the site-selective C-H thianthrenation of arenes/alkenes with high regioselectivity. Mechanistic studies revealed a crucial role of the in situ formed copper-sulfur complex, which undergoes a facile SET process with the thianthrenium salts under visible light conditions, thereby successfully achieving the desired cross-coupling reactivity.
Collapse
Affiliation(s)
- Guoju Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuzhen Dong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qilong Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
5
|
Prabhakar NS, Kishor K, Singh KN. Easy Access to α-Ketothioamides via Oxidative Amidation of Bunte Salts Using Electrolysis or Hypervalent Iodine. J Org Chem 2024; 89:13329-13337. [PMID: 39255445 DOI: 10.1021/acs.joc.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two new protocols leveraging electrochemical and hypervalent iodine-mediated synthesis of α-ketothioamides have been developed by using easily accessible and cost-effective Bunte salts and secondary amines. The methods are efficient, simple, and straightforward, and showcase the formation of C-N bonds across diverse substrates under ambient conditions.
Collapse
Affiliation(s)
- Neha Sharma Prabhakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Kaushal Kishor
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
6
|
Hu M, Yang X, Zhang S, Qin C, Zhang Z, Wang J, Ji F, Jiang G. Electrochemical oxidative thioetherification of aldehyde hydrazones with thiophenols. Org Biomol Chem 2024; 22:5907-5912. [PMID: 38988186 DOI: 10.1039/d4ob00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An electrochemically promoted oxidative dehydrogenation cross-coupling reaction between aldehyde hydrazones and thiophenols is demonstrated for the first time, which resulted in a variety of (Z)-thioetherified products in moderate to excellent yields. This strategy can be carried out under an air atmosphere, featuring scalability and excellent stereoselectivity. In addition, the transformation efficiently produces readily recyclable disulfide as a by-product with high yields, which significantly reduces the environmental pollution caused by thioetherification.
Collapse
Affiliation(s)
- Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Xiaolin Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Zhihua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Jingfang Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China.
| |
Collapse
|
7
|
Zhang Y, Guo Y, Zhao Y, Cao S. NaOAc-Assisted Aerobic Oxidation Protocol for the Synthesis of Pentacoordinate Chalcogenyl Spirophosphoranes with P-Se/P-S Bonds under Open Air. J Org Chem 2024; 89:3259-3270. [PMID: 38380616 DOI: 10.1021/acs.joc.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The NaOAc-assisted aerobic oxidation reaction of pentacoordinate hydrospirophosphoranes and dichalcogenyl compounds with open air as a green oxidant has been developed under mild conditions. A series of novel pentacoordinate spirophosphoranes with P-Se/P-S bonds were synthesized in excellent yields. The reaction mechanism was determined by 31P nuclear magnetic resonance tracing experiments, high-resolution mass spectrometry tracing experiments, and X-ray diffraction analysis. The method features a broad substrate scope, good functional group tolerance, and a high degree of atomic utilization and is meaningful for the synthesis of bioactive chalcogenphosphate compounds with chalcogen and phosphorus moieties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yanchun Guo
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yufen Zhao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shuxia Cao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
8
|
Ash J, Kang JY. Catalyst-free thiophosphorylation of in situ formed ortho-quinone methides. Org Biomol Chem 2023; 21:2370-2374. [PMID: 36852656 DOI: 10.1039/d2ob02169b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A metal-, chloride reagent and base-free thiophosphorylation reaction of in situ formed ortho-quinone methide (o-QM) to synthesize functionalized thiophosphates has been developed. The reaction is an atom-economical process, producing water as the sole byproduct. (EtO)2P(O)SH functions as both a Brønsted acid and nucleophilic thiolate to produce the o-QM intermediate and the thiophosphate product, respectively. The aza o-QMs were also successfully thiophosphorylated in the presence of catalytic TsOH to form sulfonamido thiophosphates.
Collapse
Affiliation(s)
- Jeffrey Ash
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| |
Collapse
|
9
|
Li S, Fang L, Dou Q, Wang T, Cheng B. Recent advances in phosphorylation of hetero-nucleophilic reagents via P–H bond cleavage. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
10
|
Chen ZW, Pratheepkumar A, Bai R, Hu Y, Badsara SS, Huang KW, Lee CF. Cesium carbonate-catalyzed synthesis of phosphorothioates via S-phosphination of thioketones. Chem Commun (Camb) 2022; 58:11001-11004. [PMID: 36093933 DOI: 10.1039/d2cc04331a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient and environmentally-friendly base-mediated transition metal-free direct thiophilic catalytic approach is reported for the synthesis of S-benzhydryl-phosphorothioates by reacting phosphite nucleophiles with diarylmethanethione. A wide variety of thioketones were coupled with different phosphite derivatives to provide the corresponding phosphorothioates in good to excellent yields. The control experiments and density functional theory (DFT) calculations rely on the regio-selective thiophilic addition of a phosphite nucleophile via umpolung protocols.
Collapse
Affiliation(s)
- Ze-Wei Chen
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.).
| | - Annamalai Pratheepkumar
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.).
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.).
| | - Yongyi Hu
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.). .,i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.).,Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.)
| |
Collapse
|
11
|
Wang J, Han F, Hao S, Tang YJ, Xiong C, Xiong L, Li X, Lu J, Zhou Q. Metal-Free Regioselective Hydrophosphorodithioation of Spirovinylcyclopropyl Oxindoles: Rapid Access to Allyl Dialkylphosphorodithioates. J Org Chem 2022; 87:12844-12853. [PMID: 36166737 DOI: 10.1021/acs.joc.2c01435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorodithioates are important substructures due to their great use in bioactive compounds and functional materials. A metal-free 1,5-addition of spirovinylcyclopropyl oxindoles have been developed by choosing P4S10 and alcohol as nucleophiles through the regioselective ring-opening of spirovinylcyclopropyl oxindoles. This method provides access to allylic organothiophosphates with high efficiency, wide functional group tolerance, good chemo- and regioselectivity, and E-selectivity. 1,3-Addition products were also prepared in high yield. Furthermore, the resulting organothiophosphates could be readily transformed into other allylic derivatives.
Collapse
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Fang Han
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Siyuan Hao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yu-Jiang Tang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lin Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xiancheng Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jinrong Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
12
|
Rahaman R, Nair AM, Volla CMR. Visible-Light Mediated Arbuzov-Like Reaction with Thiophenols. Chemistry 2022; 28:e202201290. [PMID: 35670550 DOI: 10.1002/chem.202201290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 11/10/2022]
Abstract
We hereby disclose, a visible light mediated addition of sulfenyl radicals to trialkyl phosphites to access functionalized phosphorothioates. The use of cheap and readily available Eosin Y as a photocatalyst under mild energy efficient conditions bypassing the use of external oxidants forms the chief highlight of the work. The protocol is scalable and mechanistic studies indicate that the reaction proceeds through an ionic-Arbuzov like pathway from phosphoranyl radicals.
Collapse
Affiliation(s)
- Rajjakfur Rahaman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
13
|
Shen BR, Annamalai P, Bai R, Badsara SS, Lee CF. Blue LED-Mediated Syntheses of Arylazo Phosphine Oxides and Phosphonates via N-P Bond Formation. Org Lett 2022; 24:5988-5993. [PMID: 35926085 DOI: 10.1021/acs.orglett.2c02251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of (E)-diphenyl(aryldiazenyl)phosphine oxides and dialkyl (E)-(aryldiazenyl)phosphonates via visible light-mediated N-P bond formation between diazo species and phosphine oxides and phosphite derivatives, respectively, is described. The diazo species were generated via the reaction of aniline with isoamyl nitrite, which upon reaction with phosphorus surrogates generated arylazophosphine oxides and arylazo phosphonates in good to excellent yields. This sustainable chemical process offers a broad substrate scope and reasonably viable product formation.
Collapse
Affiliation(s)
- Bo-Ru Shen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | | | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN, Marg, Jaipur, Rajasthan 302004, India
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC.,i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan, ROC.,Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|
14
|
Shen BR, Annamalai P, Wang SF, Bai R, Lee CF. Blue LED-Promoted Syntheses of Phosphorothioates and Phosphorodithioates. J Org Chem 2022; 87:8858-8870. [PMID: 35762987 DOI: 10.1021/acs.joc.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An environmentally friendly and resourceful modular protocol for the synthesis of phosphorochalcogenoates, phosphorochalcogenothioates, and phosphinothioates under blue light-emitting diode irradiation is described. The blue LED-promoted P-S, P-Se, and P-Te bond constructions occurred under metal-free, ligand-free, oxidant-free, and photocatalyst-free conditions with minimum chemical waste generation and high atom economy providing the resulting phosphorochalcogenoates, phosphorochalcogenothioates, and phosphinothioates in good to excellent yields.
Collapse
Affiliation(s)
- Bo-Ru Shen
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | | | - Shih-Fang Wang
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C.,i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City, Taiwan 402, R.O.C.,Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| |
Collapse
|
15
|
Diem Ferreira Xavier MC, Hartwig D, Lima Valente LC, Silva MS. Ditelluride-Catalyzed synthesis of phosphoramidates: A design of experiment approach. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Controllable cross-coupling of thiophenols with dichloromethane mediated by consecutively paired electrolysis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Zhang B, Fu Z, Yang H, Liu D, Sun Y, Xu Y, Yu F, Yan S. Transition‐Metal‐Free C(
sp
2
)−H Phosphorothiolation/Cyclization of
o
‐Hydroxyarylenaminones: Access to
S
‐3‐Chromon Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Zhonghui Fu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Haoqi Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Donghan Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yulin Sun
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yu Xu
- School of nursing Xi'An Innovation College of Yan'An University Xi'An 710100 People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Sheng‐Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| |
Collapse
|
18
|
Li H, Yan W, Ren P, Hu H, Sun R, Liu M, Fu Z, Guo S, Cai H. Bromide ion promoted practical synthesis of phosphinothioates of sulfinic acid derivatives and H-phosphine oxides. RSC Adv 2022; 12:32350-32354. [DOI: 10.1039/d2ra06351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, a method for the practical synthesis of thiophosphinates under metal free and open flask conditions is reported.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Wenjie Yan
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Peipei Ren
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Huimin Hu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Runbo Sun
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Meixia Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Hu Cai
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| |
Collapse
|
19
|
Wang R, Dong X, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Enabled Cascade Phosphorylation of N-H/O-H/S-H Bonds with P-H Compounds: An Efficient Access to P(O)-X Bonds. Chemistry 2021; 27:14931-14935. [PMID: 34449952 DOI: 10.1002/chem.202102262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 12/13/2022]
Abstract
An electrochemical three component cascade phosphorylation reaction of various heteroatoms-containing nucleophiles including carbazoles, indoles, phenols, alcohols, and thiols with Ph2 PH has been established. Electricity is used as the "traceless" oxidant and water and air are utilized as the "green" oxygen source. All kinds of structurally diverse organophosphorus compounds with P(O)-N/P(O)-O/P(O)-S bonds are assembled in moderate to excellent yields (three categories of phosphorylation products, 50 examples, up to 97 % yield). A tentative free radical course is put forward to rationalize the reaction procedure.
Collapse
Affiliation(s)
- Ruige Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Xiaojuan Dong
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| |
Collapse
|
20
|
Jang HY. Oxidative cross-coupling of thiols for S-X (X = S, N, O, P, and C) bond formation: mechanistic aspects. Org Biomol Chem 2021; 19:8656-8686. [PMID: 34596196 DOI: 10.1039/d1ob01368h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on the reactive intermediates (disulfides, sulfenyl halides, thiyl radicals, sulfenium cations, and metal-organosulfur species) and the mechanisms of the recently reported oxidative couplings of thiols. These intermediates are generated by chemical oxidants, transition metal catalysts, electrochemistry, and photochemistry. Chemical oxidant-mediated reactions involve radical, halogenated, or cationic intermediates, or disulfides. Transition metal-catalyzed mechanisms proposed various metal-organosulfur intermediates to elucidate the reactivity and selectivity of metal catalysts. In electro- and photooxidation, direct oxidation/reduction mechanisms of reactants at the electrode or indirect oxidation/reduction of reactants in the presence of redox catalysts have been reported. The following sections are based on the products, thiosulfonates (S-S bond), sulfenamides, sulfinamides, and sulfonamides (S-N bond), sulfinates (S-O bond), thiophosphine oxides and thiophosphates (S-P bond), and sulfides, sulfoxides, and sulfones (S-C bond) and discuss the reaction mechanisms and the above-mentioned key intermediates for product formation. The contents of this review will provide helpful information, guiding the choice of oxidative coupling conditions for the synthesis of various organosulfur compounds with high yields and selectivity.
Collapse
Affiliation(s)
- Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
21
|
Ghosh D, Ghosh S, Hajra A. Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry St. Joseph's College (Autonomous) Bangalore 560027 Karnataka India
| | - Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
22
|
Guo Y, Luo Y, Mu S, Xu J, Song Q. Photoinduced Decarboxylative Phosphorothiolation of N-Hydroxyphthalimide Esters. Org Lett 2021; 23:6729-6734. [PMID: 34410131 DOI: 10.1021/acs.orglett.1c02300] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A visible-light-induced protocol for the synthesis of phosphorothioates is developed by employing the Ir-catalyzed decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. This novel synthesis method utilizes carboxylic acids as raw material, which is stable, cheap, and commercially available. Scope studies show that this reaction has good compatibility of functional groups. Notably, both the synthesis of steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Wei Z, Wang R, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Direct Thiolation of Lactams with Mercaptans: An Efficient Access to
N
‐Acylsulfenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoxin Wei
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Renjie Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
24
|
Zhong Q, Xiong Z, Sheng S, Chen J. Electrochemical synthesis for benzisothiazol-3(2H)-ones by dehydrogenative N S bond formation. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Electrochemically driven synthesis of phosphorothioates from trialkyl phosphites and aryl thiols. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Du Z, Qi Q, Gao W, Ma L, Liu Z, Wang R, Chen J. Electrochemical Heteroatom-Heteroatom Bond Construction. CHEM REC 2021; 22:e202100178. [PMID: 34463430 DOI: 10.1002/tcr.202100178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/30/2023]
Abstract
Heteroatom-heteroatom linkage, with S-S bond as a presentative motif, served a crucial role in biochemicals, pharmaceuticals, pesticides, and material sciences. Thus, preparation of the privileged scaffold has always been attracting tremendous attention from the synthetic community. However, classic protocols suffered from several drawbacks, such as toxic and unstable agents, poor functional group tolerance, multiple steps, and explosive oxidizing regents as well as the transitional metal catalysts. Electrochemical organic synthesis exhibited a promising alternative to the traditional chemical reaction due to the sustainable electricity can be employed as the traceless redox agents. Hence, toxic and explosive oxidants and/or transitional metals could be discarded under mild reaction with high efficiency. In this context, a series of electrochemical approaches for the construction of heteroatom-heteroatom bond were reviewed. Notably, most of the cases illustrated the dehydrogenative feature with the clean energy molecules hydrogen as the sole by-product.
Collapse
Affiliation(s)
- Zhiying Du
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qiqi Qi
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Archives of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Zhenxian Liu
- Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|
27
|
Zhong Z, Xu P, Zhou A. Electrochemical phosphorylation of arenols and anilines leading to organophosphates and phosphoramidates. Org Biomol Chem 2021; 19:5342-5347. [PMID: 34043743 DOI: 10.1039/d1ob00779c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical phosphorylation for generating organophosphates and phosphoramidates via electrochemical dehydrogenative cross-coupling of P(O)H compounds with arenols and anilines is disclosed. This method involves using inorganic iodide salts as both redox catalysts and electrolytes in an undivided cell without the addition of oxidants or bases. A preliminary mechanistic study suggests that radicals are not involved in this process. This method is green and eco-friendly and has good functional group tolerance, high yields and broad substrate scope, with the potential for practical synthesis.
Collapse
Affiliation(s)
- Zijian Zhong
- School of Pharmacy, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, China.
| | - Pan Xu
- School of Pharmacy, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, China.
| | - Aihua Zhou
- School of Pharmacy, Jiangsu University, Xuefu Road 301, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
28
|
Meng ZY, Feng CT, Zhang L, Yang Q, Chen DX, Xu K. Regioselective C–H Phosphorothiolation of (Hetero)arenes Enabled by the Synergy of Electrooxidation and Ultrasonic Irradiation. Org Lett 2021; 23:4214-4218. [DOI: 10.1021/acs.orglett.1c01161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ze-Yin Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Cheng-Tao Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Ling Zhang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Qing Yang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - De-Xiang Chen
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
29
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
30
|
Chen Y, Li M, Gong Z, Shen Z. Trichloroisocyanuric acid-promoted thiolation of phosphites by thiols. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1799369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yingying Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhangshui Gong
- R & D Department, Hangzhou Toka Ink Co. Ltd., Hangzhou Economic & Technological Development Area, Hangzhou, China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
31
|
Wirth T, Amri N. Accelerating Electrochemical Synthesis through Automated Flow: Efficient Synthesis of Chalcogenophosphites. Synlett 2020. [DOI: 10.1055/s-0040-1707141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Integrated electrochemical reactors in automated flow systems have been utilised for chalcogenophosphite formations. Multiple electrochemical reactions can be performed using a programmed sequence in a fully autonomous way. Differently functionalised chalcogenophosphites have been efficiently synthesised in short reaction times.
Collapse
|
32
|
Electrochemical Phosphorylation of Organic Molecules. CHEM REC 2020; 20:1530-1552. [DOI: 10.1002/tcr.202000096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/04/2023]
|
33
|
Handoko, Benslimane Z, Arora PS. Diselenide-Mediated Catalytic Functionalization of Hydrophosphoryl Compounds. Org Lett 2020; 22:5811-5816. [DOI: 10.1021/acs.orglett.0c01858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Handoko
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Zacharia Benslimane
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
34
|
Dong X, Wang R, Jin W, Liu C. Electrochemical Oxidative Dehydrogenative Phosphorylation of N-Heterocycles with P(O)-H Compounds in Imidazolium-Based Ionic Liquid. Org Lett 2020; 22:3062-3066. [PMID: 32255646 DOI: 10.1021/acs.orglett.0c00814] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a direct and green electrochemical oxidative cross-dehydrogenative coupling reaction of N-heterocycles with hydrogen phosphoryl compounds under external oxidant-free conditions. Various phosphorylation products of substituted carbazoles and indoles are assembled in modest to excellent yields. A hydrogen release process is preliminarily demonstrated and H2 is the sole byproduct. An imidazolium based ionic liquid is selected as the optimal electrolyte.
Collapse
Affiliation(s)
- Xiaojuan Dong
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| | - Ruige Wang
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| | - Weiwei Jin
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| | - Chenjiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P.R. China
| |
Collapse
|
35
|
|
36
|
|