1
|
Rezaei E, Shahedi M, Habibi Z. Biocatalytic Synthesis of Nitrile-Bearing All-Carbon Quaternary Stereocenters. J Org Chem 2024; 89:10562-10571. [PMID: 39051740 DOI: 10.1021/acs.joc.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The synthesis of all-carbon quaternary stereocenters containing nitriles is a very important and challenging subject in organic chemistry. We used a biocatalytic approach under mild conditions to obtain new derivatives of these scaffolds by oxidation of catechols by Myceliophthora thermophila laccase (Novozym 51003) to afford o-quinones and 1,4-addition of a series of carbon nucleophiles containing tertiary alkyle nitriles to these intermediates. Using this approach, α-cyano carbonyls bearing a quaternary stereocenter were also prepared. Finally, the yields for the prepared compounds were 72-94%.
Collapse
Affiliation(s)
- Elaheh Rezaei
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Mansour Shahedi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
2
|
Shen J, Li H, Li Y, Zhu Z, Luo K, Wu L. Visible-Light-Promoted Radical Cascade Sulfone Alkylation/Cyclization of 2-Isocyanoaryl Thioethers Enabled by Electron Donor-Acceptor Complex Formation. J Org Chem 2024; 89:10223-10233. [PMID: 38939958 DOI: 10.1021/acs.joc.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A photo-induced cascade sulfone alkylation/cyclization of 2-isocyanoaryl thioethers is explored. This visible-light-triggered reaction not only occurs under extremely mild reaction conditions but also does not require the presence of a photosensitizer. The photocatalytic process is triggered by the photochemical activity of in situ-generated electron donor-acceptor complexes, arising from the association of 2-isocyanoaryl thioethers and α-iodosulfones. The radical pathway was confirmed by UV-vis spectroscopy, radical trapping, Job's plot, and on/off irradiation experiments.
Collapse
Affiliation(s)
- Jiamei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Liu D, Zhang Y, Niu D. Preparing glycosyl benzothiazoles from 2-isocyanoaryl thioethers and glycosyl radicals under thermal conditions. Chem Commun (Camb) 2024; 60:5498-5501. [PMID: 38696183 DOI: 10.1039/d4cc00648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, we report a method for preparing glycosyl benzothiazoles via radical cascade cyclization, in which glycosyl radicals are generated from readily available and bench-stable allyl glycosyl sulfones. This cascade reaction proceeds under simple conditions and tolerates a broad substrate scope in high yield with excellent stereoselectivity. Mechanistic studies support that the reactions proceed via the intermediacy of imidoyl radicals, which attack the appended sulfide unit by a SH2 process to forge the thiazole ring.
Collapse
Affiliation(s)
- Daqi Liu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
5
|
Hu LY, Zhang SY, Zhu L, Li Y, Luo K, Wu L. "Boomerang" Strategy in Carbohydrate Chemistry: Diastereoselective Synthesis of C-Glycosylated Benzothiazoles from ortho-Isocyanophenyl Thioglycosides. Org Lett 2024; 26:215-220. [PMID: 38117978 DOI: 10.1021/acs.orglett.3c03817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
This paper reveals a novel "boomerang" strategy in the expedient and diastereoselective synthesis of C-nucleoside analogues. Bench-stable ortho-isocyanophenyl thioglycosides can be converted to glycosyl radicals through rapid and efficient C-S bond homolysis when they are irradiated by visible light. The glycosyl radicals are subsequently trapped by the corresponding leaving group or other radical acceptors to provide diverse C-nucleoside analogues under mild conditions.
Collapse
Affiliation(s)
- Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shen-Yuan Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Li Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
6
|
Jiao Y, Shi X, Ju L, Yu S. Photoredox-Catalyzed Synthesis of C-Benzoselenazolyl/Benzothiazolyl Glycosides from 2-Isocyanoaryl Selenoethers/Thioethers and Glycosyl Bromides. Org Lett 2024; 26:390-395. [PMID: 38165656 DOI: 10.1021/acs.orglett.3c04059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Molecules containing heteroatoms, such as Se and S, play an indispensable role in the discovery and design of pharmaceuticals, whereas Se has been less studied. Here, we described a photoredox strategy to synthesize C-benzoselenazolyl (Bs) glycosides from 2-isocyanoaryl selenoethers and glycosyl bromides. This reaction was carried out under mild conditions with high efficiency. C-Benzothiazolyl (Bt) glycosides could also be synthesized from 2-isocyanoaryl thioethers using this strategy. This method can access novel seleno/thiosugars, which will benefit Se/S-containing drug discovery.
Collapse
Affiliation(s)
- Yi Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoran Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Ju
- Sunichem Company, Limited, Dandong 118003, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Yang K, Luo Y, Hu Q, Song M, Liu J, Li Z, Li B, Sun X. Selective C(sp 3)-S Bond Cleavage of Thioethers to Build Up Unsymmetrical Disulfides. J Org Chem 2023; 88:13699-13711. [PMID: 37747962 DOI: 10.1021/acs.joc.3c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The selective C(sp3)-S bond cleavage of thioethers was first developed to prepare unsymmetrical disulfides by using electrophilic halogenation reagents. In this strategy, NBS (N-bromosuccinimide) achieves selective furfuryl C(sp3)-S bond cleavage of furfuryl alkylthioethers at room temperature. Meanwhile, NFSI (N-fluorobenzenesulfonimide) enables selective methyl C(sp3)-S bond cleavage of aryl and alkyl methylthioethers at an elevated temperature. Notably, the substrate scope investigation indicates that the order of selectivity of the C-S bond cleavage is furfuryl C(sp3)-S > benzyl C(sp3)-S > alkyl C(sp3)-S > C(sp2)-S bond. Moreover, this practical and operationally simple strategy also provides an important complementary way to access various unsymmetrical disulfides with excellent functional group tolerances and moderate to good yields.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanqi Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mengjie Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Junxiang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
8
|
Gao C, Blum SA. Silyl Radical Cascade Cyclization of 2-Isocyanothioanisole toward 2-Silylbenzothiazoles through Radical Initiator-Inhibitor Symbiosis. J Org Chem 2022; 87:13124-13137. [PMID: 36098507 DOI: 10.1021/acs.joc.2c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A demethylative silyl radical cascade cyclization of 2-isocyanothioanisoles toward 2-silylated benzothiazole building blocks has been developed. The development of a "radical initiator-inhibitor symbiosis" system solves the challenge of otherwise dominant methyl radical-triggered side reactions brought about by kinetically unfavored generation of reactive silyl radical species. The products accessed in this protocol are amendable to various downstream functionalization reactions, including the quick construction of a topoisomerase II inhibitor via a Hiyama cross-coupling reaction and of an antiviral agent via a fluoride-/hydroxide-free nucleophilic substitution to acyl chloride.
Collapse
Affiliation(s)
- Chao Gao
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
9
|
Tiwari MK, Iqubal A, Das P. Intramolecular oxidative C–N bond formation under metal-free conditions: One-pot global functionalization of pyrazole ring. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Xue D, Ge Q, Zhi X, Song S, Shao L. Metal-free radical cascade cyclization of 2-isocyanoaryl thioethers with alcohols: Synthesis of 2-hydroxyalkyl benzothiazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Shainyan BA, Zhilitskaya LV, Yarosh NO. Synthetic Approaches to Biologically Active C-2-Substituted Benzothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082598. [PMID: 35458794 PMCID: PMC9027766 DOI: 10.3390/molecules27082598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Numerous benzothiazole derivatives are used in organic synthesis, in various industrial and consumer products, and in drugs, with a wide spectrum of biological activity. As the properties of the benzothiazole moiety are strongly affected by the nature and position of substitutions, in this review, covering the literature from 2016, we focus on C-2-substituted benzothiazoles, including the methods of their synthesis, structural modification, reaction mechanisms, and possible pharmacological activity. The synthetic approaches to these heterocycles include both traditional multistep reactions and one-pot atom economy processes using green chemistry principles and easily available reagents. Special attention is paid to the methods of the thiazole ring closure and chemical modification by the introduction of pharmacophore groups.
Collapse
|
12
|
Dong J, Hu J, Liu X, Sun S, Bao L, Jia M, Xu X. Ionic Reactivity of 2-Isocyanoaryl Thioethers: Access to 2-Halo and 2-Aminobenzothia/Selenazoles. J Org Chem 2022; 87:2845-2852. [PMID: 35133836 DOI: 10.1021/acs.joc.1c02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An ionic cascade insertion/cyclization reaction of thia-/selena-functionalized arylisocyanides has been successfully developed for the efficient and practical synthesis of 2-halobenzothiazole/benzoselenazole derivatives. This synthetic protocol, incorporating a halogen atom when forming the five-membered ring of benzothia/selenazoles, is different from the existing ones, where halogenation of the preformed benzothia/selenazole precursors happens. Additionally, a facile access to 2-aminobenzothiazoles is also achieved by the one-pot cascade reaction of 2-isocyanoaryl thioethers, iodine, and amines.
Collapse
Affiliation(s)
- Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Junlin Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoli Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Shaoguang Sun
- Medical College of Panzhihua University, Panzhihua, Sichuan 617000, China
| | - Lan Bao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
13
|
Yuan S, Ye X, Cai J, Song Z, Tan Y, Peng Y, Ding Q. DMF-Assisted Radical Cyclization of o-Isocyanodiaryl Ethers via 1,5-Aryl Migration: Construction of 2-Arylbenzoxazoles. J Org Chem 2021; 87:1485-1492. [PMID: 34967643 DOI: 10.1021/acs.joc.1c02806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel DMF-assisted radical cyclization of o-isocyanodiaryl ethers via 1,5-aryl migration has been developed for the synthesis of a series of 2-arylbenzoxazoles by the FeCl3/TBHP/Et3N catalytic system in DMF. However, N,N-dimethylbenzo[d]thiazole-2-carboxamide and N,N-dimethylbenzo[d]selenazole-2-carboxamide were obtained from the corresponding substrate 2-isocyanophenyl p-methoxyphenyl thioether and 2-isocyanodiphenyl selenoether under the same conditions. A possible mechanism may involve aryl 1,5-migration and DMF-assisted radical cyclization of o-isocyanodiaryl ethers.
Collapse
Affiliation(s)
- Sitian Yuan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Xiaoling Ye
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jingyu Cai
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuxing Tan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
14
|
Huang J, Chen Z, Wu J. Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiapian Huang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
15
|
Xie X, Li Y, Xia Y, Luo K, Wu L. Visible Light‐Induced Metal‐Free and Oxidant‐Free Radical Cyclization of (2‐Isocyanoaryl)(methyl)sulfanes with Ethers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao‐Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yun‐Tao Xia
- School of Chemistry & Chemical Engineering Henan University of Technology Zhengzhou 450001 P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
- College of Chemical Engineering Xinjiang Agricultural University Urumqi 830052 P. R. China
| |
Collapse
|
16
|
Yadav T, Brahmachari G, Karmakar I, Yadav P, Prasad A, Pathak A, Agarwal A, Kumar R, Mukherjee V, Pandey G, Bento R, Yadav N. Conformational and vibrational spectroscopic investigation of N-n‑butyl, S-2-nitro-1-(p-tolyl)ethyl dithiocarbamate – a bio-relevant sulfur molecule. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Wu F, Yao H, Li W, Zhang N, Fan Y, Chan ASC, Li X, An B. Synthesis and evaluation of novel 2,4-diaminopyrimidines bearing a sulfoxide moiety as anaplastic lymphoma kinase (ALK) inhibition agents. Bioorg Med Chem Lett 2021; 48:128253. [PMID: 34245852 DOI: 10.1016/j.bmcl.2021.128253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022]
Abstract
Anaplastic lymphoma kinase (ALK) targeted therapies have demonstrated remarkable efficacy in ALK-positive lung adenocarcinomas. Here we synthesized and evaluated sixteen new 2,4-diaminopyrimidines bearing a sulfoxide moiety as anaplastic lymphoma kinase (ALK) inhibitors. The optimal compound 9e exhibited excellent antiproliferative activity against non-small cell lung cancer NCI-H2228 cells, which is better than that of Brigatinib and similar to Ceritinib. Mechanism study revealed that the optimal compound 9e decreased the mitochondrial membrane potential and arrested NCI-H2228 cells in the G0/G1 phase, finally resulting in cellular apoptosis. It is interesting that 9e could effectively inhibit the migration of NCI-H2228 cells and may be a promising leading compound for chemotherapy of metastatic cancer.
Collapse
Affiliation(s)
- Feng Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Han Yao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Niuniu Zhang
- School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541199, PR China
| | - Yangyang Fan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong Province 264003, PR China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Baijiao An
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong Province 264003, PR China.
| |
Collapse
|
18
|
Xu P, Zhu YM, Liu XY, Zhou XZ, Wang SY, Ji SJ. Mn(III)-mediated radical reaction of 2-isocyano-6-alkenyl(alkynyl)benzonitriles with arylboronic acids: Synthesis of pyrroloisoquinoline derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Cai T, Shen F, Ni Y, Xu H, Shen R, Gao Y. Cascade Radical Annulation of 2-Alkynylthio(seleno)anisoles with Acetone or Acetonitrile: Synthesis of 3-Acetomethyl- or Cyanomethyl-Substituted Benzothio(seleno)phenes. J Org Chem 2021; 86:1002-1011. [PMID: 33284023 DOI: 10.1021/acs.joc.0c02444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient method for the direct preparation of 3-aceto(cyano)methyl-substituted benzothio(seleno)phenes has been achieved through C(sp3)-H bond activation of easily available acetone or acetonitrile and cascade radical cyclization reaction. In this cascade radical cyclization reaction, C(sp2)-C(sp3) and C(sp2)-S bonds, as well as benzenethio(seleno)phene skeletons, can be built along with the cleavage of the C(sp3)-S bond, demonstrating the high step-economics and efficiency of this approach.
Collapse
Affiliation(s)
- Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Fangqi Shen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuqi Ni
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huiting Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
20
|
Liao J, Yang X, Ouyang L, Lai Y, Huang J, Luo R. Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01453b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review is devoted to highlighting main achievements in the development of cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles.
Collapse
Affiliation(s)
- Jianhua Liao
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Xiao Yang
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Lu Ouyang
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Yinlong Lai
- College of Chemistry and Environmental Engineering
- Shaoguan University
- Shaoguan 512005
- China
| | - Jiuzhong Huang
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Renshi Luo
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou
- P. R. China
| |
Collapse
|
21
|
Liu Y, Xia Y, Cui S, Ji Y, Wu L. Palladium‐Catalyzed Cascade Hydrosilylation and Amino‐Methylation of Isatin Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun‐Tao Xia
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Su‐Hang Cui
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yi‐Gang Ji
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- Jiangsu Key Laboratory of Biofunctional Molecules, Department of Life Sciences and ChemistryJiangsu Second Normal University Nanjing 210013 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
22
|
Sun X, Liu T, Yang Y, Gu Y, Liu Y, Ji Y, Luo K, Zhu J, Wu L. Visible‐Light‐Promoted Regio‐ and Stereoselective Oxyalkenyl‐ation of Phosphinyl Allenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Sun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Teng Liu
- College of Chemistry and Material ScienceShandong Agricultural University, Taian Shandong 271018 People's Republic of China
| | - Yan‐Tong Yang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yue‐Jie Gu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yu‐Wei Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yi‐Gang Ji
- Jiangsu Key Laboratory of Biofunctional Molecules, Department of Life Sciences and ChemistryJiangsu Second Normal University Nanjing 210013 People's Republic of China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|