1
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Torelli A, Choi ES, Dupeux A, Perner MN, Lautens M. Stereoselective Kinugasa/Aldol Cyclization: Synthesis of Enantioenriched Spirocyclic β-Lactams. Org Lett 2023; 25:8520-8525. [PMID: 37966421 DOI: 10.1021/acs.orglett.3c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We report an enantioselective copper-catalyzed Kinugasa/aldol domino reaction. This strategy enables access to a range of spirocyclic β-lactam pyrrolidinones in a stereoselective fashion. Under mild reaction conditions, prochiral alkyne-tethered ketones are coupled with nitrones to enable the facile construction of two spirofused ring systems containing three continuous stereocenters with excellent enantioselectivity. Also disclosed are post-transformation modifications demonstrating potential downstream functionalization of the spirocyclic molecules.
Collapse
Affiliation(s)
- Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eun Seo Choi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Aurélien Dupeux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Marcel Nicolas Perner
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
3
|
Garay-Talero A, Goulart TAC, Gallo RDC, Pinheiro RDC, Hoyos-Orozco C, Jurberg ID, Gamba-Sánchez D. An aza-Robinson Annulation Strategy for the Synthesis of Fused Bicyclic Amides: Synthesis of (±)-Coniceine and Quinolizidine. Org Lett 2023; 25:7940-7945. [PMID: 37877616 PMCID: PMC10630962 DOI: 10.1021/acs.orglett.3c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 10/26/2023]
Abstract
An aza-Robinson annulation strategy is described using a NaOEt-catalyzed conjugate addition of cyclic imides onto vinyl ketones, followed by a TfOH-mediated intramolecular aldol condensation to afford densely functionalized fused bicyclic amides. The potential use of these amides in the synthesis of alkaloids is demonstrated by the sequential conversion of appropriate precursors to (±)-coniceine and quinolizidine in two additional steps, thus allowing their preparation in overall 40 and 44% yields, respectively.
Collapse
Affiliation(s)
- Alexander Garay-Talero
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| | - Tales A. C. Goulart
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Rafael D. C. Gallo
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Roberto do C. Pinheiro
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Catalina Hoyos-Orozco
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| | - Igor D. Jurberg
- Institute
of Chemistry, State University of Campinas, Rua Monteiro Lobato 270, 13083-862 Campinas, SP, Brazil
| | - Diego Gamba-Sánchez
- Laboratory
of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, 111711 Bogota, Colombia
| |
Collapse
|
4
|
Li K, Gao S, Zha Z, Wang Z. Construction of chiral N, O-hemiaminals via a copper-catalyzed enantioselective Michael/ N-hemiacetalization cascade reaction. Org Biomol Chem 2023; 21:4404-4408. [PMID: 37191101 DOI: 10.1039/d3ob00542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An efficient Michael/N-hemiacetalization cascade reaction of 5-aminoisoxazoles with β,γ-unsaturated α-ketoesters was developed under the catalysis of a chiral copper complex. A series of optically pure six-membered ring N,O-hemiaminals were obtained with excellent yields (up to 96% yield) and high enantioselectivities (up to 98% ee). The possible transition state was supported by DFT calculations and thereby the corresponding mechanism was proposed.
Collapse
Affiliation(s)
- Kuiliang Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Siyu Gao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
5
|
Byun S, Farah AO, Wise HR, Katchmar A, Cheong PHY, Scheidt KA. Enantioselective Copper-Catalyzed Borylative Amidation of Allenes. J Am Chem Soc 2022; 144:22850-22857. [DOI: 10.1021/jacs.2c10507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seunghwan Byun
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon97331, United States
| | - Henry R. Wise
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon97331, United States
| | - Andrew Katchmar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Paul H.-Y. Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon97331, United States
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
6
|
Yu L, Huang S, Cai T, Du K, Wu C, Dong H, Shen R. Diastereoselective Access to Triazolo[1,2- a]indolines via a Bio-Inspired Oxidative Cyclization of NH-Indoles. J Org Chem 2022; 87:15114-15119. [PMID: 36201282 DOI: 10.1021/acs.joc.2c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Establishing three-dimensional chemicals by using the C2-C3 π bond of indoles has always been a research hotspot in organic synthesis; however, employing the oxidative C2-C3 π bond of indoles to generate imine which would lead to the N1-C2 π bond cyclization under metal-free conditions is still rare. Here, we report a bio-inspired synthesis of triazolo[1,2-a]indolines by the oxidative cyclization between NH-indoles and azomethine imines with 3,3-dimethyldioxirane as the sole oxidant under metal-free and mild conditions. This finding represents an elegant instance of tri-functionalization of NH-indoles, which provides rapid access to a broad range of triazolo[1,2-a]indolines with tetrahydroisoquinolines in one single step. Up to 86% yield and above 20:1 dr value are observed. The radical mechanism and proton migration process have been speculated.
Collapse
Affiliation(s)
- Lemao Yu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Senhao Huang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Tao Cai
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Chunlei Wu
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Huaping Dong
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing312000, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing312000, China
| |
Collapse
|
7
|
Palladium‐catalyzed Intramolecular Dehydrogenative Arylboration of Alkenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Quevedo-Acosta Y, Jurberg ID, Gamba-Sánchez D. Cyclization Strategies Using Imide Derivatives for the Synthesis of Polycyclic Nitrogen‐Containing Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Igor D. Jurberg
- Universidade Estadual de Campinas Institute of Chemistry 13083 BRAZIL
| | - Diego Gamba-Sánchez
- Universidad de Los Andes Chemistry Department Cra 1 No. 18A-12 Q:305 111711 Bogota COLOMBIA
| |
Collapse
|
9
|
Morla JR, Nareddula DR. Synthesis of dihydroisoquinolinone-4-methylboronic esters via domino Heck/borylation using a structurally characterized palladacycle as a catalyst. RSC Adv 2022; 12:6762-6771. [PMID: 35424619 PMCID: PMC8982083 DOI: 10.1039/d2ra00389a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Synthesis of dihydroisoquinolinone-4-methylboronic esters from N-allylcarboxamides and B2(Pin)2via domino Heck/borylation approach is reported. A quinoxaline-based NHC-palladacycle [Pd(C∧C:)PPh3Cl], which has been structurally characterized, is used as a catalyst. The scope of the substrate with a wide range of substituents is explored. In addition to the synthesis of title compounds, a few examples of methylboronic esters of indoline and benzofuran motifs have also been prepared using the same protocol. Synthesis of dihydroisoquinolinone-4-methylboronic esters from N-allylcarboxamides and B2(Pin)2via domino Heck/borylation has been achieved by using a quinoxaline-based NHC-palladacycle [Pd(C∧C:)PPh3Cl].![]()
Collapse
Affiliation(s)
- Jhansi Rani Morla
- Department of Chemistry, Pondicherry University Pondicherry 605014 India
| | | |
Collapse
|
10
|
Jadhav SB, Dash SR, Maurya S, Nanubolu JB, Vanka K, Chegondi R. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nat Commun 2022; 13:854. [PMID: 35165287 PMCID: PMC8844005 DOI: 10.1038/s41467-022-28288-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
The catalytic asymmetric borylation of conjugated carbonyls followed by stereoselective intramolecular cascade cyclizations with in situ generated chiral enolates are extremely rare. Herein, we report the enantioselective Cu(I)-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones. This asymmetric desymmetrization strategy has a broad range of substrate scope to generate densely functionalized bicyclic enones bearing four contiguous stereocenters with excellent yield, enantioselectivity, and diastereoselectivity. One-pot borylation/cyclization/oxidation via the sequential addition of sodium perborate reagent affords the corresponding alcohols without affecting yield and enantioselectivity. The synthetic potential of this reaction is explored through gram-scale reactions and further chemoselective transformations on products. DFT calculations explain the requirement of the base in an equimolar ratio in the reaction, as it leads to the formation of a lithium-enolate complex to undergo C-C bond formation via a chair-like transition state, with a barrier that is 22.5 kcal/mol more favourable than that of the copper-enolate complex. Rapidly building molecular structures with both elements of complexity and flexibility is a key goal of organic synthesis. Here the authors show a tandem copper-catalyzed β-borylation/Michael addition on prochiral enone-tethered 2,5-cyclohexadienones, to generate bicyclic borylated products in high yield and enantioselectivity.
Collapse
|
11
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
14
|
De Jesús Cruz P, Crawford ET, Liu S, Johnson JS. Stereodivergent Nucleophilic Additions to Racemic β-Oxo Acid Derivatives: Fast Addition Outcompetes Stereoconvergence in the Archetypal Configurationally Unstable Electrophile. J Am Chem Soc 2021; 143:16264-16273. [PMID: 34570512 DOI: 10.1021/jacs.1c07702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Additions of carbon nucleophiles to racemic α-stereogenic β-oxo acid derivatives that deliver enantiomerically enriched tertiary alcohols are valuable, but uncommon. This article describes stereodivergent Cu-catalyzed borylative cyclizations of racemic β-oxo acid derivatives bearing tethered pro-nucleophilic olefins to deliver highly functionalized cyclopentanols containing four contiguous stereogenic centers. The reported protocol is applicable to a range of β-oxo acid derivatives, and the diastereomeric products are readily isolable by typical chromatographic techniques. α-Stereogenic-β-keto esters are typically thought to have extreme or spontaneous configurational fragility, but mechanistic studies for this system reveal an unusual scenario wherein productive catalysis occurs on the same time scale as background substrate racemization and completely outcompetes on-cycle epimerization, even under the basic conditions of the reaction.
Collapse
Affiliation(s)
- Pedro De Jesús Cruz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Evan T Crawford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Shubin Liu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.,Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3420, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
15
|
Shen MH, Wan TB, Huang XR, Li Y, Qian DH, Xu HD, Xu D. Copper catalyzed borylative cyclization of 3-arylallyl carbamoyl chloride with B2pin2: stereoselective synthesis of cis-2-aryl-3-boryl-γ-lactams. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Dherbassy Q, Manna S, Shi C, Prasitwatcharakorn W, Crisenza GEM, Perry GJP, Procter DJ. Enantioselective Copper-Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angew Chem Int Ed Engl 2021; 60:14355-14359. [PMID: 33847459 PMCID: PMC8252434 DOI: 10.1002/anie.202103259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/15/2022]
Abstract
Quinazolinones are common substructures in molecules of medicinal importance. We report an enantioselective copper-catalyzed borylative cyclization for the assembly of privileged pyrroloquinazolinone motifs. The reaction proceeds with high enantio- and diastereocontrol, and can deliver products containing quaternary stereocenters. The utility of the products is demonstrated through further manipulations.
Collapse
Affiliation(s)
- Quentin Dherbassy
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Srimanta Manna
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Chunling Shi
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- School of Material and Chemical EngineeringXuzhou University of TechnologyXuzhou221018P.R. China
| | | | | | - Gregory J. P. Perry
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
17
|
Dherbassy Q, Manna S, Shi C, Prasitwatcharakorn W, Crisenza GEM, Perry GJP, Procter DJ. Enantioselective Copper‐Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Quentin Dherbassy
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Srimanta Manna
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Chunling Shi
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
- School of Material and Chemical Engineering Xuzhou University of Technology Xuzhou 221018 P.R. China
| | | | | | - Gregory J. P. Perry
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
18
|
Larin EM, Torelli A, Loup J, Lautens M. One-Pot, Three-Step Synthesis of Benzoxazinones via Use of the Bpin Group as a Masked Nucleophile. Org Lett 2021; 23:2720-2725. [PMID: 33689389 DOI: 10.1021/acs.orglett.1c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utilization of the Bpin group as a pronucleophile to facilitate the assembly of cyclic carbamates has been achieved. This one-pot process involves an initial copper-catalyzed borylation, a subsequent C-B bond oxidation to generate the reactive alcohol intermediate, and a cyclization. We report the use of this efficient, scalable, and simple method toward the synthesis of a wide range of benzoxazinone scaffolds, including enantioselective results. Subsequent transformations into useful scaffolds showcase the utility of this strategy.
Collapse
Affiliation(s)
- Egor M Larin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Joachim Loup
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
19
|
Yang Z, Li P, Lu H, Li G. Copper-Catalyzed Asymmetric Borylacylation of Styrene and Indene Derivatives. J Org Chem 2021; 86:4616-4624. [PMID: 33689325 DOI: 10.1021/acs.joc.1c00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The enantioselective copper-catalyzed borylacylation of aryl olefins with acyl chlorides and bis-(pinacolato)diboron is reported. This three-component reaction involves an enantioselective syn-borylcupration of the aryl olefin, followed by a nucleophilic attack on the acyl chloride. This reaction proceeds with a 2 mol % catalyst loading and is generally completed within 30 min at room temperature. Because the boron moiety can be converted into versatile functional groups and the carbonyl group is a ubiquitous functional group, the resulting chiral β-borylated ketones are versatile intermediates in organic synthesis.
Collapse
Affiliation(s)
- Zhen Yang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Peiyuan Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
20
|
Ji Y, Zhang M, Xing M, Cui H, Zhao Q, Zhang C. Transition Metal Catalyzed Enantioselective Borylative Cyclization Reactions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuqi Ji
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Min Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92 Tianjin 300072 China
| |
Collapse
|
21
|
Li X, Ren X, Wu H, Zhao W, Tang X, Huang G. Mechanism and selectivity of copper-catalyzed borocyanation of 1-aryl-1,3-butadienes: A computational study. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Chen J, Li JH, Zhu YP, Wang QA. Copper-catalyzed enantioselective arylboronation of activated alkenes leading to chiral 3,3′-disubstituted oxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00186h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copper-catalyzed asymmetric arylboronation of activated alkenes for producing highly enantioenriched 3-boroalkyl oxindoles and incorporating pharmacophores is depicted.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- School of Pharmacy
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Qiu-An Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
23
|
Torelli A, Whyte A, Polishchuk I, Bajohr J, Lautens M. Stereoselective Construction of γ-Lactams via Copper-Catalyzed Borylacylation. Org Lett 2020; 22:7915-7919. [DOI: 10.1021/acs.orglett.0c02837] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Iuliia Polishchuk
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan Bajohr
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
24
|
Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02758] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
25
|
Marchese AD, Larin EM, Mirabi B, Lautens M. Metal-Catalyzed Approaches toward the Oxindole Core. Acc Chem Res 2020; 53:1605-1619. [PMID: 32706589 DOI: 10.1021/acs.accounts.0c00297] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oxindole scaffold is a privileged structural motif that is found in a variety of bioactive targets and natural products. Moreover, derivatives of the oxindole structure are widely present in a number of biologically relevant compounds and are key intermediates in the synthesis of diverse natural products and pharmaceuticals. Therefore, novel methods to obtain oxindoles remain of high priority in synthetic organic chemistry.Over the past several decades, novel transition-metal-catalyzed methodologies have been applied toward the synthesis of a variety of heterocycles. A detailed mechanistic understanding facilitates the disruption of traditional catalytic pathways to access useful synthetic intermediates. The strategies employed have generally revolved around the generation of high-energy organometallic intermediates, which undergo cyclization reactions through domino processes. Domino cyclization methodologies are therefore attractive, as they allow facile access to functionalized oxindoles containing all-carbon quaternary centers or tetrasubstituted olefins with high chemo- and stereoselectivities. Furthermore, these developed synthetic strategies can often be easily applied in the syntheses of other related scaffolds.In this Account, we discuss the three unique strategies that our group has leveraged for the synthesis of valuable oxindole scaffolds. The first section in this Account outlines the use of an initial oxidative addition to a C(sp2)-X bond, followed by a migratory insertion, yielding a neopentyl species amenable to a variety of subsequent functionalizations. From this reactive neopentyl metal species, we have reported C-X reductive eliminations, anionic capture cascade reactions, and intramolecular C-H functionalization processes. The second section of this Account summarizes our group's findings on 1,2-insertions of a metal-nucleophile species across an unsaturation, generating a reactive organometallic intermediate; subsequent reactions with tethered electrophiles form the desired heterocyclic core. We have explored a wide array of transition metal-catalyzed strategies using this approach, including rhodium-catalyzed conjugate additions, an asymmetric copper-catalyzed borylcupration, and a palladium(II)-catalyzed chloropalladation protocol. The final section of this Account details the use of dual-metal catalysis to perform a cyclization through a C-H functionalization-allylation domino reaction. Throughout this Account, we provide details of mechanistic studies that better enabled our understanding of the domino processes.Overall, our group has developed methods exploiting the unique reactivity of palladium, nickel, copper, rhodium, and ruthenium catalysts to develop methods toward a wide array of oxindole scaffolds. On the basis of the utility, diversity, and applicability of the strategies developed, we believe that they will prove to be highly useful in the syntheses of other important targets and inspire further development and mechanistic understanding of various metal-catalyzed processes.
Collapse
Affiliation(s)
- Austin D. Marchese
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Egor M. Larin
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, Davenport Chemical Laboratories, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
26
|
Xue W, Oestreich M. Beyond Carbon: Enantioselective and Enantiospecific Reactions with Catalytically Generated Boryl- and Silylcopper Intermediates. ACS CENTRAL SCIENCE 2020; 6:1070-1081. [PMID: 32724842 PMCID: PMC7379128 DOI: 10.1021/acscentsci.0c00738] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Catalytic asymmetric C-C bond formation with alkylcopper intermediates as carbon nucleophiles is now textbook chemistry. Related chemistry with boron and silicon nucleophiles where the boryl- and accordingly silylcopper intermediates are catalytically regenerated from bench-stable pronucleophiles had been underdeveloped for years or did not even exist until recently. Over the past decade, asymmetric copper catalysis employing those main-group elements as nucleophiles rapidly transformed into a huge field in its own right with an impressive breadth of enantioselective C-B and C-Si bond-forming reactions, respectively. Its current state of the art does not have to shy away from comparison with that of boron's and silicon's common neighbor in the periodic table, carbon. This Outlook is not meant to be a detailed summary of those manifold advances. It rather aims at providing a brief conceptual summary of what forms the basis of the latest exciting progress, especially in the area of three-component reactions and cross-coupling reactions.
Collapse
Affiliation(s)
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
27
|
Larin EM, Loup J, Polishchuk I, Ross RJ, Whyte A, Lautens M. Enantio- and diastereoselective conjugate borylation/Mannich cyclization. Chem Sci 2020; 11:5716-5723. [PMID: 34094079 PMCID: PMC8159378 DOI: 10.1039/d0sc02421j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Strategies to capitalize on enolate intermediates generated from stereoselective conjugate borylation to α,β-unsaturated carbonyl systems are surprisingly rare despite the ubiquity of Michael acceptors, and the potential to generate valuable scaffolds bearing multiple stereocenters. Herein, we report a mild and stereoselective copper-catalyzed conjugate borylation/Mannich cyclization reaction. This strategy is feasible with a broad range of Michael acceptors, and can be leveraged to generate versatile borylated tetrahydroquinoline scaffolds bearing three contiguous stereocenters. The synthetic potential of these complex heterocycles has been explored through a series of derivatization studies. Copper-catalyzed enantio- and diastereoselective conjugate borylation across Michael acceptors, with subsequent Mannich-type cyclization, was utilized to construct tetrahydroquinoline scaffolds containing three contiguous stereocenters.![]()
Collapse
Affiliation(s)
- Egor M Larin
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Joachim Loup
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Iuliia Polishchuk
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Rachel J Ross
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Andrew Whyte
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
28
|
Quevedo-Acosta Y, Jurberg ID, Gamba-Sánchez D. Activating Imides with Triflic Acid: A General Intramolecular Aldol Condensation Strategy Toward Indolizidine, Quinolizidine, and Valmerin Alkaloids. Org Lett 2020; 22:239-243. [PMID: 31845813 DOI: 10.1021/acs.orglett.9b04199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A simple, inexpensive, step economic, and highly modular synthetic strategy to access izidine alkaloids is described. The key step is a TfOH-promoted intramolecular aldol condensation between enol and cyclic imide moieties. This cyclization strategy can be employed within an aza-Robinson annulation framework and represents a general tool to build fused bicyclic amines. To illustrate the power of this method, we describe the preparation of (±)-coniceine, (±)-quinolizidine, (±)-tashiromine, (±)-epilupinine, and the core of (±)-valmerins.
Collapse
Affiliation(s)
- Yovanny Quevedo-Acosta
- Institute of Chemistry , State University of Campinas , Rua Monteiro Lobato 270 , 13083-862 Campinas , São Paulo , Brazil
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department , Universidad de los Andes , Cra 1 No. 18A-12 Q:305 , 111711 Bogotá , Colombia
| | - Igor D Jurberg
- Institute of Chemistry , State University of Campinas , Rua Monteiro Lobato 270 , 13083-862 Campinas , São Paulo , Brazil
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department , Universidad de los Andes , Cra 1 No. 18A-12 Q:305 , 111711 Bogotá , Colombia
| |
Collapse
|
29
|
Liu B, Qiu H, Chen X, Li W, Zhang J. Copper-catalyzed asymmetric tandem borylative addition and aldol cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo00654h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective asymmetric copper-catalyzed tandem conjugate addition/aldol cyclization of electron-deficient olefins with B2pin2 was developed, which provided a rapid access to indanes bearing three consecutive chiral stereogenic centers.
Collapse
Affiliation(s)
- Bing Liu
- National Doping Test Laboratory Shanghai
- Shanghai University of Sport
- Shanghai
- P. R. China
| | - Haile Qiu
- Department of Chemistry
- East China Normal University
- Shanghai
- P. R. China
| | - Xiaofeng Chen
- Department of Chemistry
- East China Normal University
- Shanghai
- P. R. China
| | - Wenbo Li
- Department of Chemistry
- East China Normal University
- Shanghai
- P. R. China
| | - Junliang Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- P. R. China
| |
Collapse
|