1
|
Wu C, Xu Y, Li S, Meng Y, Fang H, Yan C. Formation of Radical-like NH Ligand from NH 3 at Ambient Conditions Mediated by Dialkyl Rare-Earth Complexes. J Am Chem Soc 2024; 146:30824-30835. [PMID: 39485863 DOI: 10.1021/jacs.4c08752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Although intensive work on ammonia activation has been carried out in recent decades, generating nitrogen-centered radicals from NH3 under ambient conditions remains quite challenging. In the presented research, the conversion of NH3 to radical-like NH ligand has been achieved by the reactions of a series of dialkyl rare-earth (RE) complexes (1-RE, RE = Tb, Dy, Y, Ho, Er, Yb, and Lu) supported by β-diketiminate ligands with NH3 in n-hexane at room temperature, resulting in the formations of the radical-like μ3-NH ligands containing trinuclear RE complexes (2-RE). The radical-like feature of the μ3-NH ligand was revealed by electron paramagnetic resonance and magnetic measurements, radical trapping experiments, and computational spin density analysis. In addition, H2 was detected to form during the reaction of 1-RE with NH3, indicating that the radical-like μ3-NH ligand was likely to be generated via N-H bond homolysis. Moreover, the solvents and coordination pattern of β-diketiminate ligands are crucial for the formation of the radical-like μ3-NH ligand from NH3. When toluene instead of n-hexane was used in the reaction of 1-RE with NH3, an array of octaamido tetranuclear RE complexes (3-RE) was obtained. The reaction of the dialkyl yttrium complex (4-Y) bearing a modified β-diketiminate ligand, in which the two mesityl substituents are replaced by a 2,6-diisopropylphenyl group and a 2-(dimethylamino)ethyl group, with NH3 in both n-hexane and toluene only yielded a tetranuclear yttrium complex carrying the dianionic closed-shell μ3-NH ligands (5-Y).
Collapse
Affiliation(s)
- Changjiang Wu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
- College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yingzhuang Xu
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Songyi Li
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yinshan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Chunhua Yan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Xiong SQ, Hong CM, Li QH, Liu TL. Copper-Catalyzed Aza-Benzyl Transfer Michael Addition via C-C Bond Cleavage. J Org Chem 2023; 88:3523-3531. [PMID: 36823497 DOI: 10.1021/acs.joc.2c02740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A non-noble Cu-catalyzed transfer aza-benzyl Michael addition via the C-C bond cleavage of aza-benzyl alcohols has been disclosed. The unstrained C(sp3)-C(sp3) bond of an alcohol was selectively cleaved. This aza-benzyl transfer strategy provides a selective and environmentally benign approach for the C-alkylation of α,β-unsaturated carbonyl compounds that employs readily available alcohols as carbon nucleophiles and is characterized by a wide range of substrates and good to excellent yields.
Collapse
Affiliation(s)
- Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Hong CM, Xiong SQ, Zhang X, Ma KX, Li QH, Liu TL. Sliver-Catalyzed 1,3-Aza-Benzyl Migration of Allyl Alcohol. Org Lett 2022; 24:7712-7716. [PMID: 36201425 DOI: 10.1021/acs.orglett.2c02809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbon migration of alkenyl alcohols has been recognized as an increasingly viable methodology in organic synthesis. Herein, we disclose a silver-catalyzed 1,3-aza-benzyl migration of allyl alcohols by utilizing chelation-assisted selective cleavage of an unstrained C(sp3)-C(sp3) bond. This approach provides an available, efficient, high atom-economic, and environmentally benign procedure, leading to alkylation products with broad substrate scopes and excellent yields. The migration proceeds via a one-pot, two-step process involving a free-state alkyl metal species.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kai-Xian Ma
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Zhuang X, Zhu M, Hong CM, Luo Z, Li WF, Li QH, Luo QL, Liu TL. Alkynyl Borrowing: Silver-Catalyzed Amination of Secondary Propargylic Alcohols via C(sp 3)-C(sp) Bond Cleavage. J Org Chem 2022; 87:5395-5403. [PMID: 35385662 DOI: 10.1021/acs.joc.2c00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The silver-catalyzed alkynyl borrowing amination of secondary propargyl alcohols via C(sp3)-C(sp) bond cleavage has been developed. This new strategy was based on the β-alkynyl elimination of propargyl alcohols and alkynyl as the borrowing subject. This alkynyl borrowing amination featured high atom economy, wide functional group tolerance, and high efficiency.
Collapse
Affiliation(s)
- Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Zhu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wan-Fang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qun-Li Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Hong CM, Zhuang X, Luo Z, Xiong SQ, Liu ZQ, Li QL, Zou FF, Li QH, Liu TL. Copper-catalyzed transfer methylenation via C(sp 3)–C(sp 3) bond cleavage of alcohols. Org Chem Front 2022. [DOI: 10.1039/d2qo01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transfer Methylenation: A copper-catalyzed transfer methylenation via the cleavage of unstrained C(sp3)-C(sp3) bonds is developted. This is a de novo report for transfer hydrocarbylation between alcohols and carbonyl compounds.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Hong CM, Zou FF, Zhuang X, Luo Z, Liu ZQ, Ren LQ, Li QH, Liu TL. 2-Pyridinylmethyl borrowing: base-promoted C-alkylation of (pyridin-2-yl)-methyl alcohols with ketones via cleavage of unstrained C(sp3)–C(sp3) bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01446c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2-Pyridinylmethyl Borrowing: Transition-metal-free 2-pyridinylmethyl borrowing C-alkylation of alcohols access to ketones is developed. This unstrained C(sp3)–C(sp3) bonds cleavage of unactivated alcohols avoids the use of transition metals.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Li-Qing Ren
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Liu Z, Tao J, Zhuang X, Hong C, Luo Z, Wu Y, Li Q, Liu T. Rhodium(III)‐Catalyzed Aryl Borrowing Amination of Diaryl Methanols Containing Pyridine‐Directing Groups. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zheng‐Qiang Liu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Jing Tao
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Chuan‐Ming Hong
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Yu‐Fei Wu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Qing‐Hua Li
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| | - Tang‐Lin Liu
- School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 People's Republic of China
| |
Collapse
|
8
|
Hikawa H, Nakayama T, Takahashi M, Kikkawa S, Azumaya I. Direct Use of Benzylic Alcohols for Multicomponent Synthesis of 2‐Aryl Quinazolinones Utilizing the π‐Benzylpalladium(II) System in Water. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Taku Nakayama
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Makiko Takahashi
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences Toho University 2-2-1 Miyama Funabashi Chiba 274-8510 Japan
| |
Collapse
|
9
|
Kiyokawa K, Urashima N, Minakata S. Tris(pentafluorophenyl)borane-Catalyzed Formal Cyanoalkylation of Indoles with Cyanohydrins. J Org Chem 2021; 86:8389-8401. [PMID: 34077225 DOI: 10.1021/acs.joc.1c00808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the significant achievements related to the C3 functionalization of indoles, cyanoalkylation reactions continue to remain rather limited. We herein report on the formal C3 cyanoalkylation of indoles with cyanohydrins in the presence of a tris(pentafluorophenyl)borane (B(C6F5)3) catalyst. It is noteworthy that cyanohydrins are used as a cyanoalkylating reagent in the present reaction, even though they are usually used as only a HCN source. Mechanistic investigations revealed the unique reactivity of the B(C6F5)3 catalyst in promoting the decomposition of a cyanohydrin by a Lewis acidic activation through the coordination of the cyano group to the boron center. In addition, a catalytic three-component reaction using indoles, aldehydes as a carbon unit, and acetone cyanohydrin that avoids the discrete preparation of each aldehyde-derived cyanohydrin is also reported. The developed methods provide straightforward, highly efficient, and atom-economic access to various types of synthetically useful indole-3-acetonitrile derivatives containing α-tertiary or quaternary carbon centers.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Naruyo Urashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Tao J, Yang TT, Li QH, Liu TL. Transition-metal free cyano 1,3 migration of unsaturated cyanohydrins. Org Chem Front 2021. [DOI: 10.1039/d1qo00181g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel approach of transition-metal-free cyano 1,3-migration of β,γ- and α,β-unsaturated cyanohydrins is reported.
Collapse
Affiliation(s)
- Jing Tao
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Ting-Ting Yang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
11
|
Pan J, Zhang R, Ma S, Han L, Xu B. Easily Synthesized Ru Catalyst Efficiently Converts Carbonyl Compounds and Ammonia into Primary Amines. ChemistrySelect 2020. [DOI: 10.1002/slct.202002795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jia‐Sheng Pan
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Rui Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Shuang‐Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Li‐Jun Han
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bao‐Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process Key Laboratory of Green Process and Engineering State Key Laboratory of Multiphase Complex Systems Institution of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- College of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
12
|
Liu TL, Li ZF, Tao J, Li QH, Li WF, Li Q, Ren LQ, Peng YG. Cyano-borrowing: titanium-catalyzed direct amination of cyanohydrins with amines and enantioselective examples. Chem Commun (Camb) 2020; 56:651-654. [PMID: 31840151 DOI: 10.1039/c9cc08576a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The direct amination of cyanohydrins with amines via a catalytic cyano-borrowing reaction was developed. The transformation features broad substrate scope, excellent functional group compatibility, and very mild and simple operations. Moreover, a titanium catalyst supported by quinine and (S)-BINOL ligands enabled an asymmetric cyano-borrowing reaction with moderate to high enantioselectivity.
Collapse
Affiliation(s)
- Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zhao-Feng Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jing Tao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Wan-Fang Li
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Li
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Li-Qing Ren
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yun-Gui Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|