1
|
Escorihuela J, Fustero S. Fluorinated Imines in Tandem and Cycloaddition Reactions. CHEM REC 2023; 23:e202200262. [PMID: 36633495 DOI: 10.1002/tcr.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Indexed: 01/13/2023]
Abstract
The chemistry of fluorinated compounds has experienced extraordinary growth in recent decades due to the many and varied properties which many of the compounds that contain fluorinated groups possess. Among all of them, fluorinated chiral imines, in particular the Ellman's imines, are of great importance since they are some of the most interesting building blocks for the synthesis of a large number of enantioenriched carbocycles and heterocycles with extraordinary biological and synthetic properties. This personal account covers the most significant results obtained in our research group in the last two decades concerning asymmetric tandem reactions, paying special attention to the intramolecular aza-Michael reaction (IMAMR), diversity oriented synthesis (DOS), asymmetric tandem reactions involving a p-tolylsulfinyl group as chiral inducer and cycloaddition processes, in particular, the Pauson-Khand reaction, [2+2+2]-cycloadditions and metathesis reactions, starting mainly from enyne compounds and through the use of fluorinated chiral N-sulfinyl imines and their derivatives as starting materials.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot 46100, València, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot 46100, València, Spain
| |
Collapse
|
2
|
Meng FT, Chen JL, Qin XY, Zhang TS, Tu SJ, Jiang B, Hao WJ. Gold self-relay catalysis for accessing functionalized cyclopentenones bearing an all-carbon quaternary stereocenter. Org Chem Front 2022. [DOI: 10.1039/d1qo01313k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new gold(i) self-relay catalysis consisting of a 3,3-rearrangement, Nazarov cyclization and Michael addition cascade of 1,3-enyne acetates with aurones and their derived azadienes is reported, producing functionalized cyclopentenones.
Collapse
Affiliation(s)
- Fan-Tao Meng
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Jing-Long Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiao-Yan Qin
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
3
|
Lee YH, Denton EH, Morandi B. Modular Cyclopentenone Synthesis through the Catalytic Molecular Shuffling of Unsaturated Acid Chlorides and Alkynes. J Am Chem Soc 2020; 142:20948-20955. [DOI: 10.1021/jacs.0c10832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yong Ho Lee
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | | | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Origin of diastereoselectivity and catalytic efficiency on Isothiourea-mediated cyclization of carboxylic acid with alkenyl ketone. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Evolution of Pauson-Khand Reaction: Strategic Applications in Total Syntheses of Architecturally Complex Natural Products (2016–2020). Catalysts 2020. [DOI: 10.3390/catal10101199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metal-mediated cyclizations are important transformations in a natural product total synthesis. The Pauson-Khand reaction, particularly powerful for establishing cyclopentenone-containing structures, is distinguished as one of the most attractive annulation processes routinely employed in synthesis campaigns. This review covers Co, Rh, and Pd catalyzed Pauson-Khand reaction and summarizes its strategic applications in total syntheses of structurally complex natural products in the last five years. Additionally, the hetero-Pauson-Khand reaction in the synthesis of heterocycles will also be discussed. Focusing on the panorama of organic synthesis, this review highlights the strategically developed Pauson-Khand reaction in fulfilling total synthetic tasks and its synthetic attractiveness is aimed to be illustrated.
Collapse
|
6
|
Ngamnithiporn A, Iwayama T, Bartberger MD, Stoltz BM. Enantioselective synthesis of highly oxygenated acyclic quaternary center-containing building blocks via palladium-catalyzed decarboxylative allylic alkylation of cyclic siloxyketones. Chem Sci 2020; 11:11068-11071. [PMID: 34123197 PMCID: PMC8162308 DOI: 10.1039/d0sc04383d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022] Open
Abstract
The development of a palladium-catalyzed enantioselective decarboxylative allylic alkylation of cyclic siloxyketones to produce enantioenriched silicon-tethered heterocycles is reported. The reaction proceeds smoothly to provide products bearing a quaternary stereocenter in excellent yields (up to 91% yield) with high levels of enantioselectivity (up to 94% ee). We further utilized the unique reactivity of the siloxy functionality to access chiral, highly oxygenated acyclic quaternary building blocks. In addition, we subsequently demonstrated the utility of these compounds through the synthesis of a lactone bearing vicinal quaternary-trisubstituted stereocenters.
Collapse
Affiliation(s)
- Aurapat Ngamnithiporn
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
| | - Toshihiko Iwayama
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
- Central Pharmaceutical Research Institute, Japan Tobacco Inc. 1-1, Murasaki-cho, Takatsuki Osaka 569-1125 Japan
| | | | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
7
|
Escorihuela J, Sedgwick DM, Llobat A, Medio-Simón M, Barrio P, Fustero S. Pauson-Khand reaction of fluorinated compounds. Beilstein J Org Chem 2020; 16:1662-1682. [PMID: 32733610 PMCID: PMC7372243 DOI: 10.3762/bjoc.16.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The Pauson-Khand reaction (PKR) is one of the key methods for the construction of cyclopentenone derivatives, which can in turn undergo diverse chemical transformations to yield more complex biologically active molecules. Despite the increasing availability of fluorinated building blocks and methodologies to incorporate fluorine in compounds with biological interest, there have been few significant advances focused on the fluoro-Pauson-Khand reaction, both in the inter- and intramolecular versions. Furthermore, the use of vinyl fluorides as olefinic counterparts had been completely overlooked. In this review, we collect the advances both on the stoichiometric and catalytic intermolecular and intramolecular fluoro-Pauson-Khand reaction, with special attention to the PKR of enynes containing a fluoride moiety.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Daniel M Sedgwick
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Alberto Llobat
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Mercedes Medio-Simón
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Pablo Barrio
- Departmento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, Campus Universitario de El Cristo, 33006 Oviedo, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Facultad de Farmacia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
8
|
Min XT, Ji DW, Zheng H, Chen BZ, Hu YC, Wan B, Chen QA. Cobalt-Catalyzed Regioselective Carboamidation of Alkynes with Imides Enabled by Cleavage of C–N and C–C Bonds. Org Lett 2020; 22:3386-3391. [DOI: 10.1021/acs.orglett.0c00875] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Dibrell SE, Maser MR, Reisman SE. SeO2-Mediated Oxidative Transposition of Pauson–Khand Products. J Am Chem Soc 2020; 142:6483-6487. [DOI: 10.1021/jacs.9b13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sara E. Dibrell
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael R. Maser
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Zhang S, Neumann H, Beller M. Synthesis of α,β-unsaturated carbonyl compounds by carbonylation reactions. Chem Soc Rev 2020; 49:3187-3210. [DOI: 10.1039/c9cs00615j] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbonylation reactions represent one of the most important tool box for the synthesis of α,β-unsaturated carbonyl compounds which are key building blocks in organic chemistry. This paper summarizes the most important advances in this field.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse e.V
- 18059 Rostock
- Germany
| | | | | |
Collapse
|