1
|
Wei XP, Wang XC, Ma T, Qiao XX, Li G, He Y, Zhao XJ. B(C 6F 5) 3/CPA-Catalyzed Aza-Diels-Alder Reaction of 3,3-Difluoro-2-Aryl-3H-indoles and Unactivated Dienes. Chemistry 2024; 30:e202401008. [PMID: 38624085 DOI: 10.1002/chem.202401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Here we report B(C6F5)3/CPA-catalyzed enantioselective aza-Diels-Alder reaction of 3,3-difluoro-2-Aryl-3H-indoles with unactivated dienes to access chiral 10,10-difluoro-tetrahydropyrido[1,2-a]indoles. This protocol allows the formation of pyrazole-based C2-quaternary indolin-3-ones with high enantioselectivities and regioselectivities. Moreover, gram-scale synthesis of the 10,10-difluoro-tetrahydropyrido[1,2-a]indole skeleton was successfully achieved without any reduction in both yield and enantioselectivity.
Collapse
Affiliation(s)
- Xing-Pin Wei
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xin-Chun Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
2
|
Laue M, Schneider M, Gebauer M, Böhlmann W, Gläser R, Schneider C. General, Modular Access toward Immobilized Chiral Phosphoric Acid Catalysts and Their Application in Flow Chemistry. ACS Catal 2024; 14:5550-5559. [PMID: 38660609 PMCID: PMC11036403 DOI: 10.1021/acscatal.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Chiral phosphoric acids (CPAs) are among the most frequently used organocatalysts, with an ever-increasing number of applications. However, these catalysts are only obtained in a multistep synthesis and are poorly recyclable, which significantly deteriorates their environmental and economic performance. We herein report a conceptually different, general strategy for the direct immobilization of CPAs on a broad scope of solid supports including silica, polystyrene, and aluminum oxide. Solid-state catalysts were obtained in high yields and thoroughly characterized with elemental analysis by inductively coupled plasma-optical emission spectrometry (ICP-OES), nitrogen sorption measurements, thermogravimetric analysis, scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX) images, and solid-state NMR spectroscopy. Further, the immobilized catalysts were applied to a variety of synthetically valuable, highly stereoselective transformations under batch and flow conditions including transfer hydrogenations, a Friedländer condensation/transfer hydrogenation sequence, and Mannich reactions under cryogenic flow conditions. Generally, high yields and stereoselectivities were observed along with robust catalyst stability and reusability. After being used for 10 runs under batch conditions, no loss of selectivity or catalytic activity was observed. Under continuous-flow conditions, the heterogeneous system was in operation for 19 h and the high enantioselectivity remained unchanged throughout the entire process. We expect our approach to extend the applicability of CPAs to a higher level, with a focus on flow chemistry and a more environmentally friendly and resource-efficient use of these powerful catalysts.
Collapse
Affiliation(s)
- Michael Laue
- Institute
of Organic Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | | | - Markus Gebauer
- Institute
of Chemical Technology, University of Leipzig, 04103 Leipzig, Germany
| | - Winfried Böhlmann
- Division
of Superconductivity and Magnetism, Felix-Bloch Institute for Solid-State
Physics, University of Leipzig, 04103 Leipzig, Germany
| | - Roger Gläser
- Institute
of Chemical Technology, University of Leipzig, 04103 Leipzig, Germany
| | - Christoph Schneider
- Institute
of Organic Chemistry, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Gao H, Miao Y, Sun W, Zhao R, Xiao X, Hua Y, Jia S, Wang M, Mei G. Diversity-Oriented Catalytic Asymmetric Dearomatization of Indoles with o-Quinone Diimides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305101. [PMID: 37870177 PMCID: PMC10724437 DOI: 10.1002/advs.202305101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Herein, the first diversity-oriented catalytic asymmetric dearomatization of indoles with o-quinone diimides (o-QDIs) is reported. The catalytic asymmetric dearomatization (CADA) of indoles is one of the research focuses in terms of the structural and biological importance of dearomatized indole derivatives. Although great achievements have been made in target-oriented CADA reactions, diversity-oriented CADA reactions are regarded as more challenging and remain elusive due to the lack of synthons featuring multiple reaction sites and the difficulty in precise control of chemo-, regio-, and enantio-selectivity. In this work, o-QDIs are employed as a versatile building block, enabling the chemo-divergent dearomative arylation and [4 + 2] cycloaddition reactions of indoles. Under the catalysis of chiral phosphoric acid and mild conditions, various indolenines, furoindolines/pyrroloindolines, and six-membered-ring fused indolines are collectively prepared in good yields with excellent enantioselectivities. This diversity-oriented synthesis protocol enriches the o-quinone chemistry and offers new opportunities for CADA reactions.
Collapse
Affiliation(s)
- Hao‐Jie Gao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Yu‐Hang Miao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Wen‐Na Sun
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Rui Zhao
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Xiao Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of TechnologyHangzhou310014China
| | - Yuan‐Zhao Hua
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Shi‐Kun Jia
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Min‐Can Wang
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| | - Guang‐Jian Mei
- College of ChemistryPingyuan LaboratoryZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
4
|
Wu XX, Ma T, Qiao XX, Zou CP, Li G, He Y, Zhao XJ. Enantioselective Alkynylation of 2-Aryl-3H-indol-3-ones via Cooperative Catalysis of Copper/Chiral Phosphoric Acid. Chem Asian J 2023; 18:e202300526. [PMID: 37530657 DOI: 10.1002/asia.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
A facile enantioselective alkynylation of cyclic ketimines attached to a neutral functional group utilizing the dual Cu(I)-CPA catalysis is described. The strategy of the alkynylation of 2-aryl-3H-indol-3-one directly to chiral propargylic amines containing indolin-3-one moiety in good yields and enantioselectivities. Moreover, gram-scale synthesis of chiral propargylamines based C2-quaternary indolin-3-ones was performed. The synthetic applications were confirmed by transformations of the products with no decrease in the yield and enantioselectivity.
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
5
|
Biswas A. Aromatic C-H bond functionalization through organocatalyzed asymmetric intermolecular aza-Friedel-Crafts reaction: a recent update. Beilstein J Org Chem 2023; 19:956-981. [PMID: 37404800 PMCID: PMC10315893 DOI: 10.3762/bjoc.19.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
The aza-Friedel-Crafts reaction allows an efficient coupling of electron-rich aromatic systems with imines for the facile incorporation of aminoalkyl groups into the aromatic ring. This reaction has a great scope of forming aza-stereocenters which can be tuned by different asymmetric catalysts. This review assembles recent advances in asymmetric aza-Friedel-Crafts reactions mediated by organocatalysts. The mechanistic interpretation with the origin of stereoselectivity is also explained.
Collapse
Affiliation(s)
- Anup Biswas
- Department of Chemistry, Hooghly Women’s College, Vivekananda Road, Pipulpati, Hooghly - 712103, WB, India
| |
Collapse
|
6
|
Adris D, Taskesenligil Y, Akyildiz V, Essiz S, Saracoglu N. Solvent-Mediated Tunable Regiodivergent C6- and N1-Alkylations of 2,3-Disubstituted Indoles with p-Quinone Methides. J Org Chem 2023; 88:3132-3147. [PMID: 36779866 PMCID: PMC9990074 DOI: 10.1021/acs.joc.2c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Indium-catalyzed, solvent-enabled regioselective C6- or N1-alkylations of 2,3-disubstituted indoles with para-quinone methides are developed under mild conditions. Notably, highly selective and switchable alkylations were selectively achieved by adjusting the reaction conditions. Moreover, scalability and further transformations of the alkylation products are demonstrated, and this operationally simple methodology is amenable to the late-stage C6-functionalization of the indomethacin drug. The reaction pathways were explained with the support of experimental and density functional theory studies.
Collapse
Affiliation(s)
- Douaa Adris
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Yunus Taskesenligil
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Volkan Akyildiz
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| | - Selcuk Essiz
- Department of Medical Services and Techniques, Vocational School of Health Services, Hakkari University, Hakkari 30000, Türkiye
| | - Nurullah Saracoglu
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Türkiye
| |
Collapse
|
7
|
Ma T, He Y, Qiao XX, Zou CP, Wu XX, Li G, Zhao XJ. Chiral phosphoric acid-catalyzed enantioselective aza-Friedel-Crafts reaction of naphthols and electron-rich phenols with 2-aryl-3 H-indol-3-ones. Org Biomol Chem 2023; 21:489-493. [PMID: 36541043 DOI: 10.1039/d2ob02179j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enantioselective aza-Friedel-Crafts reaction is one of the most straightforward and efficient strategies for constructing a new carbon-carbon bond bearing quaternary stereocenter in organic synthesis, but the catalytic asymmetric aza-Friedel-Crafts reaction of naphthols/phenols with cyclic-ketimines attached to a neutral functional group remains still relatively unexplored. Herein, a highly enantioselective aza-Friedel-Crafts reaction of cyclic-ketimines and naphthols/phenols has been realized using a chiral phosphoric acid catalyst. A variety of chiral aminonaphthols (chiral indolin-3-ones) containing a quaternary stereocenter at the C2 position were obtained with excellent outcomes (up to 97% yield, 98% ee). Moreover, the synthetic utility of the enantiomerically enriched chiral aminonaphthols was demonstrated in some efficient transformations. According to the experimental results, a possible transition state model has been proposed to rationalize the origin of asymmetric induction.
Collapse
Affiliation(s)
- Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
8
|
Zhang YY, Li L, Zhang XZ, Peng JB. Brønsted acid catalyzed remote C6 functionalization of 2,3-disubstituted indoles with β,γ-unsaturated α-ketoester. Front Chem 2022; 10:992398. [PMID: 36176896 PMCID: PMC9513241 DOI: 10.3389/fchem.2022.992398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
A metal-free catalytic approach for the remote C6-functionalization of 2,3-disubstituted indoles has been developed. In the presence of catalytic amounts of Brønsted acid, the β,γ-unsaturated α-ketoesters react with 2,3-disubstituted indoles at the C6 position selectively. Under mild reaction conditions, a range of C6-functionalized indoles were prepared with good yields and excellent regioselectivity. This methodology provides a concise and efficient route for the synthesis of C6-functionalized indole derivatives.
Collapse
|
9
|
Chen C, Liu RX, Xiong F, Li ZH, Kang JC, Ding TM, Zhang SY. Electrochemical collective synthesis of labeled pyrroloindoline alkaloids with Freon-type methanes as functional C1 synthons. Chem Commun (Camb) 2022; 58:9230-9233. [PMID: 35899819 DOI: 10.1039/d2cc03301a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilization of Freon-type methanes as functional one-carbon synthons in the synthesis of various deuterated indoline alkaloids was demonstrated here. A series of halomethyl radicals were generated from electro-reductive C-X cleavage of Freon-type methanes and captured efficiently by acrylamides to provide various halogenated oxindoles via radical cyclization. This reaction features good functional group tolerance, and deuterium and fluorine atoms could be introduced facilely from Freon-type methanes. Further transformation of halogenated oxindoles enabled the synthesis of many (labeled) bioactive drug molecules and skeletons, such as deuterated (±)-physostigmine, deuterated (±)-esermethole and deuterated (±)-lansai B.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Feng Xiong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
10
|
Qiu XY, Li ZH, Zhou J, Lian PF, Dong LK, Ding TM, Bai HY, Zhang SY. Chiral Phosphoric Acid-Catalyzed Enantioselective Dearomative Electrophilic Hydrazination: Access to Chiral Aza-Quaternary Carbon Indolenines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xin-Yue Qiu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jia Zhou
- Instrumental Analysis Center, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Li-Kun Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - He-Yuan Bai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
11
|
Wang XW, Huang WJ, Wang H, Wu B, Zhou YG. Chiral-Phosphoric-Acid-Catalyzed C6-Selective Pictet-Spengler Reactions for Construction of Polycyclic Indoles Containing Spiro Quaternary Stereocenters. Org Lett 2022; 24:1727-1731. [PMID: 35199528 DOI: 10.1021/acs.orglett.2c00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Compared with the well-established asymmetric Pictet-Spengler reactions on the pyrrole ring of indoles, the catalytic asymmetric Pictet-Spengler reaction on the benzene ring of indoles has been rarely studied. Herein the C6-selective Pictet-Spengler reactions of indoles have been realized by employing 2-(1H-indol-7-yl)anilines and isatins in the presence of chiral phosphoric acid, affording novel polycyclic indole derivatives bearing spiro quaternary stereocenters in excellent yields with excellent enantioselectivities. This reaction could be conducted on the gram scale without any loss of activity or enantioselectivity.
Collapse
Affiliation(s)
- Xin-Wei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China.,Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wen-Jun Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Han Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China.,Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
12
|
Muthusamy S, Kumarswamyreddy N, Kesavan V. Enantioselective Synthesis of 3‐Amino‐3’‐carbazole Oxindole Derivatives via Friedel‐Crafts Aminoalkylation Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Subramaniam Muthusamy
- Chemical Biology Laboratory Department of Biotechnology Bhupat and Jyothi Mehta School of Biosciences Building Indian Institute of Technology Madras Chennai 600036 India
| | - Nandarapu Kumarswamyreddy
- Department of Chemistry Indian Institute of Technology Tirupati Tirupati 517506 Andhra Pradesh India
| | - Venkitasamy Kesavan
- Chemical Biology Laboratory Department of Biotechnology Bhupat and Jyothi Mehta School of Biosciences Building Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
13
|
Wang G, Zhang S, Ding T, Li P, Sun Z. Highly Site‐ and Enantioselective
N‐H
Functionalization of N‐ Monosubstituted Aniline Derivatives Affording Pyrazolones Bearing a Quaternary Stereocenter. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guan‐Jun Wang
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shu‐Yu Zhang
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tong‐Mei Ding
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macao 999078 China
| | - Zhen‐Liang Sun
- Southern Medical University Affiliated Fengxian Hospital Shanghai China 201499
| |
Collapse
|
14
|
Huang W, Chen Z, Li‐Xia L, Zhou Y, Bo W, Jiang G. A Facile Synthesis of Pyrrolo[2,3‐
j
]phenanthridines
via
the Cascade Reaction of Indoleanilines and Aldehydes. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Jun Huang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Zhi‐Peng Chen
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Liu Li‐Xia
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Yong‐Gui Zhou
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Wu Bo
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Guo‐Fang Jiang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
15
|
del Corte X, Martínez de Marigorta E, Palacios F, Vicario J, Maestro A. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to CO and CN bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo01209j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2004, chiral phosphoric acids (CPAs) have emerged as highyl efficient organocatalysts, providing excellent results in a wide reaction scope. In this review, the applications of CPA for enantioselective additions to CO and CN bonds are covered.
Collapse
Affiliation(s)
- Xabier del Corte
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Martínez de Marigorta
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Javier Vicario
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Aitor Maestro
- Department of Organic Chemistry I, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
16
|
Zhou J, Li ZH, Wang L, Kang JC, Wang XH, Zhang SY. Base-Promoted Cobalt-Catalyzed Regio- and Enantioselective para-Friedel-Crafts Alkylation of Aniline Derivatives. Org Lett 2021; 23:9353-9359. [PMID: 34874735 DOI: 10.1021/acs.orglett.1c03399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we disclose a highly efficient enantioselective para-C-H alkylation of aniline derivatives promoted by a base/Co/indeno-pybox ligand system. This methodology leads to the efficient construction of a series of enantioenriched aniline derivatives bearing all-carbon quaternary stereocenters. In addition, several special biologically or medicinally active indoles are facilely synthesized by our Co-catalyzed asymmetry synthesis method. Density functional theory calculations and experiment results suggest that the (acac)- anion of Co(acac)2 plays a very important role in chiral control during the nucleophilic reaction.
Collapse
Affiliation(s)
- Jia Zhou
- Instrumental Analysis Center, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Le Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, P. R. China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xun-Hui Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shu-Yu Zhang
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, P. R. China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, and Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
17
|
Pan HP, Zhu ZQ, Qiu ZW, Liu HF, Ma JD, Li BQ, Feng N, Ma AJ, Peng JB, Zhang XZ. Dearomatization of 2,3-Disubstituted Indoles via 1,8-Addition of Propargylic (Aza)- para-Quinone Methides. J Org Chem 2021; 86:16518-16534. [PMID: 34714074 DOI: 10.1021/acs.joc.1c01857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dearomatization of indole is a useful strategy to access indolimines: a motif widely exists in biologically active molecules and natural products. Herein, an efficient method for the dearomatization of 2,3-disubstituted indoles to generate diverse indolimines with tetrasubstituted allenes is described. This work accomplishes dearomatization of 2,3-disubstituted indoles through 1,8-addition of (aza)-para-quinone methides, which are generated in situ from propargylic alcohols. A series of synthetically useful indolimines containing quaternary carbon centers and tetrasubstituted allenes can be accessed in good yields (up to 99%). Additionally, the separability of product isomers, diversified product transformations, and easy scale-up of the reaction demonstrate the potential application of this method.
Collapse
Affiliation(s)
- Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jiong-Dong Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Bao Qiong Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Na Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
18
|
Jadhav PP, Kahar NM, Dawande SG. Ruthenium(II)-Catalyzed Highly Chemo- and Regioselective Oxidative C6 Alkenylation of Indole-7-carboxamides. Org Lett 2021; 23:8673-8677. [PMID: 34723545 DOI: 10.1021/acs.orglett.1c02948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We disclosed the first efficient method for highly chemo- and regioselective C6 alkenylation of indole-7-carboxamides using inexpensive Ru(II) catalyst through chelation assisted C-H bond activation. Electronically diverse indole-7-carboxamides and alkenes react efficiently to produce a wide range of C6 alkenyl indole derivatives. Further the C6 alkenyl indole-7-carboxamides modified to their derivatives through simple chemical transformations. The observed regioselectivity and kinetics has been evidenced by deuterium incorporation and intermolecular competitive studies. In addition, for mechanistic insights, the intermediates were analyzed by HRMS.
Collapse
Affiliation(s)
- Pankaj P Jadhav
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Nilesh M Kahar
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Sudam G Dawande
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| |
Collapse
|
19
|
Wang GJ, Wang L, Zhu GD, Zhou J, Bai HY, Zhang SY. Organocatalytic Direct Asymmetric Indolization from Anilines by Enantioselective [3 + 2] Annulation. Org Lett 2021; 23:8434-8438. [PMID: 34699247 DOI: 10.1021/acs.orglett.1c03162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the efficient syntheses of chiral tetrahydroindole pyrazolinones by the asymmetric [3 + 2] cascade cyclizations (indolizations) of simple aniline derivatives with pyrazolinone ketimines as 2C synthons. The chiral phosphoric-acid-catalyzed system uses a concerted π-π interaction/dual H-bond control strategy to catalytically direct the asymmetric aniline, which undergoes a highly chemo-, regio-, and enantioselective [3 + 2] cascade annulation, furnishing a series of optically active tetra-hydroindole pyrazolinones with two contiguous chiral aza-quaternary carbon centers in excellent yields with excellent enantioselectivities. This method features a relatively broad substrate scope for amines and 2-naphthylamines and highlights the emerging value of direct chiral indolizations from simple amine sources in organic synthesis.
Collapse
|
20
|
Gashaw A, Debeli DK, Chemeda M. Asymmetric C-H and N-H functionalization of Indoles involving Central Chirality via Chiral Phosphoric Acid Catalysis. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x18666211006162836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The C-H and N-H functionalization of indoles is an interesting area of research that has a useful impact on organic synthesis due to the availability of chiral indole scaffolds in the discovery of drugs, synthetic bioactive compounds, and natural products. The chiral phosphoric acid catalysts (CPAs) have proven to be a powerful and versatile class of enantioselective organocatalysts. Many asymmetric syntheses of organic compounds have been carried out with these catalysts in C–C and C-N bond formation reactions, and great progress has been reported. By 2011, several reviews were published covering some important topics and recent achievements in this field. Therefore, in this review, the most recent advances, research breakthroughs with key examples involving mechanisms of CPA-catalyzed C-H and N-H functionalization of indoles to form central chirality via Friedel Crafts, Michael type, and rearrangement reactions were reviewed and reported.
Collapse
Affiliation(s)
- Alemayehu Gashaw
- Bule Hora University, Department of Chemistry, Bule Hora, Ethiopia
| | - Dereje Kebebew Debeli
- Addis Ababa Science and Technology University (AASTU), Department of Chemical Engineering, Addis Ababa, Ethiopia
| | - Meseret Chemeda
- Bule Hora University, Department of Chemistry, Bule Hora, Ethiopia
| |
Collapse
|
21
|
Shen MH, Li C, Xu QS, Guo B, Wang R, Liu X, Xu HD, Xu D. Allylation and alkylation of oxindoleketimines via imine umpolung strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Kong L, Han X, Chen H, Sun H, Lan Y, Li X. Rhodium(II)-Catalyzed Regioselective Remote C–H Alkylation of Protic Indoles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Xi Han
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Haohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| |
Collapse
|
23
|
Huang WJ, Ma YY, Liu LX, Wu B, Jiang GF, Zhou YG. Chiral Phosphoric Acid-Catalyzed C6 Functionalization of 2,3-Disubstituted Indoles for Synthesis of Heterotriarylmethanes. Org Lett 2021; 23:2393-2398. [PMID: 33734717 DOI: 10.1021/acs.orglett.0c04002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct regio- and enantioselective C6 functionalization of 2,3-disubstituted indoles with azadienes has been developed using chiral phosphoric acid as catalyst, providing a convenient approach to synthesize the optically active heterotriarylmethanes with excellent yields, broad substrate scope, and up to 98% ee. Mechanistic studies revealed that N-alkylation of 2,3-disubstituted indoles with azadienes would be reversible, and enantioselective C6 functionalization could be enabled.
Collapse
Affiliation(s)
- Wen-Jun Huang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Ya-Ya Ma
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| | - Guo-Fang Jiang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China
| |
Collapse
|
24
|
Lin X, Wang L, Han Z, Chen Z. Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Lei Wang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhao Han
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Zhouli Chen
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
25
|
Qin H, Zhang J, Qiao K, Zhang D, He W, Liu C, Fang Z, Guo K. Palladium-Catalyzed C2-Regioselective Perfluoroalkylation of the Free (NH)-Heteroarenes. J Org Chem 2021; 86:2840-2853. [PMID: 33433213 DOI: 10.1021/acs.joc.0c02782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A highly regioselective and atom-efficient strategy for the construction of fused free (NH) heteroarenes through a palladium-catalyzed perfluoroalkyl insertion reaction has been accomplished. This protocol employed multiple iodofluoroalkanes as practical and available perfluoroalkyl sources to provide an operationally simple and versatile route for the synthesis of perfluoroalkylated indoles. Moreover, indoles without the assistance of guide groups were utilized as substrates, achieving C(sp2)-H site-selective functionalization of indoles in yields up to 95%. Furthermore, this protocol was also used for late-stage C2 perfluoroalkylation of bioactive compounds such as auxin, tryptophan, and melatonin analogues.
Collapse
Affiliation(s)
- Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Jie Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
26
|
Bhattacharjee P, Bora U. Organocatalytic dimensions to the C–H functionalization of the carbocyclic core in indoles: a review update. Org Chem Front 2021. [DOI: 10.1039/d0qo01466d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A review highlighting important research findings in remote C–H activation processes using effectual organocatalytic perspectives. The challenging indole carbocyclic ring positions were successfully accessed with proper regio- and stereocontrols.
Collapse
Affiliation(s)
| | - Utpal Bora
- Department of Chemical Sciences
- Tezpur University
- Tezpur
- India
| |
Collapse
|
27
|
Yan J, Zhang Z, Chen M, Lin Z, Sun J. A Study of the Reactivity of (Aza‐)Quinone Methides in Selective C6‐Alkylations of Indoles. ChemCatChem 2020. [DOI: 10.1002/cctc.202000850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiyao Yan
- Department of Chemistry The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR P. R. China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd South Area Hi-tech Park Nanshan Shenzhen 518057 P. R. China
| | - Zhihan Zhang
- Department of Chemistry The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR P. R. China
| | - Min Chen
- Department of Chemistry The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR P. R. China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd South Area Hi-tech Park Nanshan Shenzhen 518057 P. R. China
| | - Zhenyang Lin
- Department of Chemistry The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR P. R. China
| | - Jianwei Sun
- Department of Chemistry The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong SAR P. R. China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd South Area Hi-tech Park Nanshan Shenzhen 518057 P. R. China
| |
Collapse
|
28
|
Wang L, Zhou J, Chen HQ, Li DL, Lin JB, Li K, Ding TM, Zhang SY. Fe-Catalyzed Sequential C(sp 3)-H/N-H Annulation of 2-Methylindoles with Ethyl Trifluoropyruvate at Room Temperature: Construction of Pyrrolo[1,2-α]indoles. Org Lett 2020; 22:4716-4720. [PMID: 32498522 DOI: 10.1021/acs.orglett.0c01522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and benign iron-catalyzed room-temperature method was developed for direct sequential C(sp3)-H/N-H annulation to construct pyrroloindole scaffolds. This strategy features cheap and readily available raw materials and mild room-temperature reaction conditions and provides a green and practical method for the one-pot rapid synthesis of a wide range of diversely functionalized pyrrolo[1,2-α]indoles.
Collapse
Affiliation(s)
- Le Wang
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han-Qia Chen
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China
| | - Dong-Li Li
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China
| | - Jun-Bing Lin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Ke Li
- Department of Medicinal Chemistry, College of Pharmacy, Second Military Medical University, No. 325, Guohe Road, Shanghai 200433, China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Yu Zhang
- School of Biotechnology and Health Science, International Healthcare Innovation Institute, Wuyi University, Jiangmen 529020, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Liu C, Tan FX, Zhou J, Bai HY, Ding TM, Zhu GD, Zhang SY. Highly Chemo-, Site-, and Enantioseletive para C-H Aminoalkylation of N-Monosubstituted Aniline Derivatives Affording 3-Amino-2-oxindoles. Org Lett 2020; 22:2173-2177. [PMID: 32141758 DOI: 10.1021/acs.orglett.0c00262] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In general, enantioselective C-H functionalization of N-monosubstituted anilines is a highly challenging task owing to the competitive chemoselective N-H bond insertion reactions. In this paper, we reported a direct highly chemo-, site-, and enantioselective para C-H aminoalkylation of N-monosubstituted aniline derivatives with isatin-derived ketimines in the presence of chiral phosphoric acids (CPAs) and offered a practical strategy for para asymmetric C-H functionalization of anilines containing N-H bonds.
Collapse
Affiliation(s)
- Chang Liu
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fu-Xin Tan
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - He-Yuan Bai
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guo-Dong Zhu
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Sixth People's Hospital South Campus, Shanghai Jiao Tong University, 6600, Nanfeng Road, Shanghai 201499, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering & Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Sixth People's Hospital South Campus, Shanghai Jiao Tong University, 6600, Nanfeng Road, Shanghai 201499, P. R. China
| |
Collapse
|
30
|
Hu WT, Li XY, Gui WT, Yu JY, Wen W, Guo QX. Chiral Bis(oxazoline)–Copper Complex Catalyzed Asymmetric Alkenylation of Isatin Imines and 3-Vinylindoles for Construction of Optically Active 3-Alkenyl-3-aminooxindoles. Org Lett 2019; 21:10090-10093. [DOI: 10.1021/acs.orglett.9b04063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wei-Ting Hu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao-Yun Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wu-Tao Gui
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia-Yu Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|