1
|
Mukherjee S, Aoki Y, Kawamura S, Sodeoka M. Ligand-Controlled Copper-Catalyzed Halo-Halodifluoromethylation of Alkenes and Alkynes Using Fluorinated Carboxylic Anhydrides. Angew Chem Int Ed Engl 2024; 63:e202407150. [PMID: 38979689 DOI: 10.1002/anie.202407150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Polyhalogenated molecules are often found as bioactive compounds in nature and are used as synthetic building blocks. Fluoroalkyl compounds hold promise for the development of novel pharmaceuticals and agrochemicals, as the introduction of fluoroalkyl groups is known to improve lipophilicity, membrane permeability, and metabolic stability. Three-component 1,2-halo-halodifluoromethylation reactions of alkenes are useful for their synthesis. However, general methods enabling the introduction of halodifluoromethyl (CF2X) and halogen (X') groups in the desired combination of X and X' are lacking. To address this gap, for the first time, we report a three-component halo-halodifluoromethylation of alkenes and alkynes using combinations of commercially available fluorinated carboxylic anhydrides ((CF2XCO)2O, X=Cl and Br) and alkali metal halides (X'=Cl and Br). In situ prepared fluorinated diacyl peroxides were identified as important intermediates, and the use of appropriate bipyridyl-based ligands and a copper catalyst was essential for achieving high product selectivity. The synthetic utility of the polyhalogenated products was demonstrated by exploiting differences in the reactivities of their C-X and C-X' bonds to achieve selective derivatization. Finally, the reaction mechanism and ligand effect were investigated using experimental and theoretical methods to provide important insights for the further development of catalytic reactions.
Collapse
Affiliation(s)
- Subrata Mukherjee
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuma Aoki
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Higashi Y, Shima K, Suzuki M, Fujishiro M, Kawai T, Morimoto T. Synthetic Utilization of 2 H-Heptafluoropropane: Ionic 1,4-Addition to Electron-Deficient Carbon-Carbon Unsaturated Bonds. J Org Chem 2024; 89:3962-3969. [PMID: 38443796 PMCID: PMC10949241 DOI: 10.1021/acs.joc.3c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
We have found a novel method for introducing heptafluoro-2-propyl CF(CF3)2 groups into carbon-carbon unsaturated bonds via a nucleophilic reaction using 2H-heptafluoropropane as the source of CF(CF3)2 groups. The reaction involves the nucleophilic addition of a heptafluoro-2-propyl anion, generated by treating 2H-heptafluoropropane with a fluoride ion, to various electron-deficient unsaturated compounds. This allows the easy synthesis of various aliphatic compounds containing heptafluoro-2-propyl groups.
Collapse
Affiliation(s)
- Yusuke Higashi
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Kotono Shima
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Mikiya Suzuki
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Moe Fujishiro
- Technology
and Innovation Center, Daikin Industries,
Ltd., Osaka 566-8585, Japan
| | - Tsuyoshi Kawai
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Division
of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| |
Collapse
|
3
|
Wu Y, Jiang Y, Wang F, Wang B, Chen C. Direct electrophilic and radical isoperfluoropropylation with i-C 3F 7-Iodine(III) reagent (PFPI reagent). Commun Chem 2023; 6:177. [PMID: 37620542 PMCID: PMC10449889 DOI: 10.1038/s42004-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The isoperfluoropropyl group (i-C3F7) is an emerging motif in pharmaceuticals, agrichemicals and functional materials. However, isoperfluoropropylated compounds remain largely underexplored, presumably due to the lack of efficient access to these compounds. Herein, we disclose the practical and efficient isoperfluoropropylation of aromatic C-H bonds through the invention of a hypervalent-iodine-based reagent-PFPI reagent, that proceeds via a Ag-X coupling process. The activation of the PFPI reagent without any catalysts or additives was demonstrated in the synthesis of isoperfluoropropylated electron-rich heterocycles, while its activity under photoredox catalysis was shown in the synthesis of isoperfluoropropylated non-activated arenes. Detailed mechanistic experiments and DFT calculations revealed a SET-induced concerted mechanistic pathway in the photoredox reactions. In addition, the unique conformation of i-C3F7 in products, that involved intramolecular hydrogen bond was investigated by X-ray single-crystal diffraction and variable-temperature NMR experiments.
Collapse
Affiliation(s)
- Yaxing Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yunchen Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fei Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bin Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Li HP, He XH, Peng C, Li JL, Han B. A straightforward access to trifluoromethylated natural products through late-stage functionalization. Nat Prod Rep 2023; 40:988-1021. [PMID: 36205211 DOI: 10.1039/d2np00056c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Covering: 2011 to 2021Trifluoromethyl (CF3)-modified natural products have attracted increasing interest due to their magical effect in binding affinity and/or drug metabolism and pharmacokinetic properties. However, the chemo and regioselective construction of natural products (NPs) bearing a CF3 group still remains a long-standing challenge due to the complex chemical scaffolds and diverse reactive sites of NPs. In recent years, the development of late-stage functionalization strategies, including metal catalysis, organocatalysis, light-driven reactions, and electrochemical synthesis, has paved the way for direct trifluoromethylation process. In this review, we summarize the applications of these strategies in the late-stage trifluoromethylation of natural products in the past ten years with particular emphasis on the reaction model of each method. We also discuss the challenges, limitations, and future prospects of this approach.
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Liao L, Zhang Y, Wu ZW, Ye ZT, Zhang XX, Chen G, Yu JS. Nickel-catalyzed regio- and enantio-selective Markovnikov hydromonofluoroalkylation of 1,3-dienes. Chem Sci 2022; 13:12519-12526. [PMID: 36382272 PMCID: PMC9629049 DOI: 10.1039/d2sc03958c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
A highly enantio- and regio-selective Markovnikov hydromonofluoro(methyl)alkylation of 1,3-dienes was developed using redox-neutral nickel catalysis. It provided a facile strategy to construct diverse monofluoromethyl- or monofluoroalkyl-containing chiral allylic molecules. Notably, this represents the first catalytic asymmetric Markovnikov hydrofluoroalkylation of olefins. The practicability of this methodology is further highlighted by its broad substrate scope, mild base-free conditions, excellent enantio- and regio-selectivity, and diversified product elaborations to access useful fluorinated building blocks.
Collapse
Affiliation(s)
- Ling Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| |
Collapse
|
6
|
Guo C, Han X, Feng Y, Liu Z, Li Y, Liu H, Zhang L, Dong Y, Li X. Straightforward Synthesis of Alkyl Fluorides via Visible-Light-Induced Hydromono- and Difluoroalkylations of Alkenes with α-Fluoro Carboxylic Acids. J Org Chem 2022; 87:9232-9241. [PMID: 35748751 DOI: 10.1021/acs.joc.2c00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein report the first visible-light-induced hydromono- and difluoroalkylations of alkenes with inexpensive and easily accessible α-fluoro carboxylic acids. This metal-free protocol exhibits mild conditions, high efficiency, and excellent functional-group tolerance, providing a straightforward approach to mono- and difluoroalkylated alkanes. Moreover, the fluorine effect on the hydrofluoroalkylation reaction is discussed in detail.
Collapse
Affiliation(s)
- Chunfang Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China.,Shandong Vocational College of Light Industry, Zhoucun Mishan Road, Zibo 255300, P. R. China
| | - Xuliang Han
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yu Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Zhaolong Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Ma Y, Lv L, Li Z. β-Perfluoroalkyl Peroxides as Fluorinated C3-Building Blocks for the Construction of Benzo[4,5]imidazo[1,2- a]pyridines. J Org Chem 2022; 87:1564-1573. [PMID: 34989560 DOI: 10.1021/acs.joc.1c02589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient and selective protocol for the synthesis of perfluoroalkyl-group-substituted benzo[4,5]imidazo[1,2-a]pyridines has been developed in which β-perfluoroalkyl peroxides act as novel fluorinated C3-building blocks to implement regioselective [3 + 3] annulation with 2-cyanomethyl benzimidazole under metal-free conditions. The application of the synthesized perfluoroalkylated BIPs as potent anticancer reagents versus the nonfluorinated ones demonstrated the biological utility of this method.
Collapse
Affiliation(s)
- Yangyang Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
8
|
Tong CL, Xu XH, Qing FL. Regioselective oxidative C–H heptafluoroisopropylation of heteroarenes with heptafluoroisopropyl silver. Org Chem Front 2022. [DOI: 10.1039/d2qo00787h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselective C–H heptafluoroisopropylation of heteroarenes with heptafluoroisopropyl silver provided convenient access to a wide range of CF(CF3)2-containing heteroarenes.
Collapse
Affiliation(s)
- Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
9
|
Tong C, Xu X, Qing F. Nucleophilic and Radical Heptafluoroisopropoxylation with Redox‐Active Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao‐Lai Tong
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Science Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
10
|
Tong CL, Xu XH, Qing FL. Nucleophilic and Radical Heptafluoroisopropoxylation with Redox-Active Reagents. Angew Chem Int Ed Engl 2021; 60:22915-22924. [PMID: 34414643 DOI: 10.1002/anie.202109572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Indexed: 11/05/2022]
Abstract
The heptafluoroisopropyl group (CF(CF3 )2 ) is prevalent in pharmaceuticals and agrichemicals. However, heptafluoroisopropoxylated (OCF(CF3 )2 ) compounds remain largely underexplored, presumably due to the lack of efficient access to these compounds. Herein, we disclose the practical and efficient heptafluoroisopropoxylation reactions through the invention of a series of redox-active N-OCF(CF3 )2 reagents. These reagents were readily prepared from the oxidative heptafluoroisopropylation of hydroxylamines with AgCF(CF3 )2 . The substitutions on the nitrogen atom significantly affected the properties and reactivities of N-OCF(CF3 )2 reagents. Accordingly, two types of N-OCF(CF3 )2 reagents including N-OCF(CF3 )2 phthalimide A and N-OCF(CF3 )2 benzotriazolium salt O' were used as OCF(CF3 )2 anion and radical precursors, respectively. This protocol enables the direct heptafluoroisopropoxylation of a range of substrates, delivering the corresponding products in moderate to excellent yields.
Collapse
Affiliation(s)
- Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
11
|
Guo Y, Wang K, Wang R, Song H, Liu Y, Wang Q. Visible‐Light‐Induced Three‐Component Intermolecular Trifluoromethyl‐Alkenylation Reactions of Unactivated Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuan‐Qiang Guo
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Kaihua Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Ruiguo Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
12
|
Wu Y, Xiao Y, Yang Y, Song R, Li J. Recent Advances in Silver‐Mediated Radical Difunctionalization of Alkenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000900] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Chen Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Yu‐Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Yong‐Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Ren‐Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Jin‐Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
13
|
Zhao J, Liu RX, Luo CP, Yang L. Radical-Dual-Difunctionalization and Trifluoromethylative Decarboxylation of Two Different Alkenes. Org Lett 2020; 22:6776-6779. [DOI: 10.1021/acs.orglett.0c02267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jing Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China
| | - Ren-Xiang Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China
| | - Cui-Ping Luo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, P.R. China
| |
Collapse
|
14
|
Wu N, Huang Y, Xu X, Qing F. Copper‐Catalyzed Hydrodifluoroallylation of Terminal Alkynes to Access (
E
)‐1,1‐Difluoro‐1,4‐Dienes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nuo‐Yi Wu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Feng‐Ling Qing
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of ScienceChinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
15
|
Xu W, Xu X, Qing F. Synthesis and Properties of
CF
3
(
OCF
3
)
CH‐Substituted
Arenes and Alkenes
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen‐Qi Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|