1
|
Liu TX, Ru Y, Guo W, Ma N, Yang P, Li X, Zhang P, Bi J, Zhang G. Catalytic System-Controlled Regioselective 1,2- and 1,4-Carboannulations of [60]Fullerene. Org Lett 2024; 26:2552-2557. [PMID: 38527028 DOI: 10.1021/acs.orglett.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Selective functionalization of fullerenes is an important but challenging topic in fullerene chemistry and synthetic chemistry. Here we present the first example of catalytic system-controlled regioselective 1,2- and 1,4-addition reactions for the flexible and efficient synthesis of novel 1,2- and 1,4-carbocycle-fused fullerenes via a palladium-catalyzed decarboxylative carboannulation process.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yifei Ru
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenyue Guo
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Panting Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaojun Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jingjing Bi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Wang WW, Zhao X, Ehara M. Mechanistic Studies of Regiocontrolled Bisaddition of Fullerenes Driven by Oriented External Electric Fields. J Org Chem 2023; 88:15783-15789. [PMID: 37938999 DOI: 10.1021/acs.joc.3c01850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The challenge of achieving regioselective multifunctionalization on highly symmetric C60 and C70 fullerenes persists as a significant hurdle. In this study, we present a novel approach involving the participation of an oriented external electric field (OEEF) to facilitate the regioselective formation of bisadducts in C60/C70 fullerenes. These products are obtained through consecutive Diels-Alder cycloaddition reactions. We constructed the field strength-barrier relationship and elucidated the OEEF-driven modulation mechanisms quantitatively. Leveraging the interplay between molecular dipoles and electric fields, the diverse reactions at distinct sites exhibit varying degrees of sensitivity to the applied electric fields, thereby leading to a pronounced regioselectivity in the bisaddition process. Our proposition suggests that the angle formed between the bonding direction (referred to as the reaction axis) and the external field can conveniently function as a predictive descriptor for the reactivity of different sites on the fullerene surface when subjected to electric fields.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Shaanxi Key Laboratory of High-Orbits-Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Xiang Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
3
|
Chen XR, Zhang JX, Zhu SK, Li YW, Yang R, Xuan J, Li F. Transition-Metal-Free Domino Reaction of [60]Fullerene, Indole, and DMSO/HCl: One-Pot Access to Diverse N-Substituted [60]Fulleroindole Derivatives. J Org Chem 2022; 87:7945-7954. [PMID: 35671227 DOI: 10.1021/acs.joc.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented multicomponent domino reaction of [60]fullerene, indole, and DMSO/HCl has been developed for the one-pot efficient synthesis of diverse N-substituted [60]fulleroindole derivatives. This methodology features simple operation, low cost, and transition-metal-circumvented and good functional group tolerance in indole.
Collapse
Affiliation(s)
- Xin-Rui Chen
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun-Xiang Zhang
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Shuai-Kang Zhu
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yi-Wen Li
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Rong Yang
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Fei Li
- Department of Chemistry; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
4
|
Jia R, Yang X, Li H, Jin B, Xu K. Interaction between cis-2 bis(benzofuro)[60]fullerene derivative and gas molecules of energetic materials (NO, NO2, N2, CO, CO2 and HCN): A DFT-D study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Liu TX, Zhu X, Xia S, Wang X, Zhang P, Zhang G. NHC-Catalyzed Three-Component Hydroalkylation Reactions of [60]Fullerene: An Umpolung Approach to Diverse Monoalkylated Hydrofullerenes. Org Lett 2022; 24:3691-3695. [PMID: 35576614 DOI: 10.1021/acs.orglett.2c01301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel N-heterocyclic carbene-catalyzed three-component umpolung hydroalkylation of [60]fullerene with 4-(chloromethyl)-benzaldehydes/α,β-unsaturated aldehydes and alcohols/thioalcohols has been developed for the flexible and efficient preparation of diverse monoalkylated hydrofullerenes. Organic catalysis, broad substrate scope, excellent functional group tolerance, and products with high diversity and complexity levels are attractive features of this protocol.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xue Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Liu TX, Wu H, Ma N, Zhang C, Zhang P, Ma J, Zhang G. Acid-Responsive Dissociation of Ferrocene Compounds: Diels–Alder Diene Equivalents for Selective Preparation of [60]Fullerene-Fused Bicyclo[2.2.1]hept-5-enes. J Org Chem 2022; 87:3104-3113. [DOI: 10.1021/acs.joc.1c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Han Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chuanjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, NMPA Key Laboratory for Research and Evaluation of Innovative Drugs, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
7
|
Liu TX, Zhang C, Zhang P, Wang X, Ma J, Zhang G. Palladium-catalyzed decarboxylative [2 + 3] cyclocarbonylation reactions of [60]fullerene: selective synthesis of [60]fullerene-fused 3-vinylcyclopentan-4-ones and cyclopentane-4-carbaldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo01116f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new palladium-catalyzed decarboxylative strategy has been developed toward direct cyclocarbonylation of [60]fullerene, selectively furnishing novel [60]fullerene-fused 3-vinylcyclopentan-4-ones and cyclopentane-4-carbaldehydes.
Collapse
Affiliation(s)
- Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chuanjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
8
|
Ma J, Liu TX, Zhang P, Zhao X, Zhang G. Metal-Free-Catalyzed Three-Component [2+2+2] Annulation Reaction of [60]Fullerene, Ketones, and Indoles: Access to Diverse [60]Fullerene-Fused 1,2-Tetrahydrocarbazoles. Org Lett 2021; 23:1775-1781. [PMID: 33576632 DOI: 10.1021/acs.orglett.1c00195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first example of metal-free-catalyzed multicomponent annulation reaction of [60]fullerene has been developed for concise and efficient construction of novel [60]fullerene-fused 1,2-tetrahydrocarbazoles. Using inexpensive and readily available I2 as a catalyst, [60]fullerene, ketones, and indoles undergo a formal [2+2+2] annulation process to conveniently assemble diverse 1,2-tetrahydrocarbazoles. Mechanistic studies indicate that this reaction proceeds through I2-promoted generation of a 3-vinylindole structure with the characteristics of a conjugated diene followed by cycloaddition to [60]fullerene.
Collapse
Affiliation(s)
- Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuna Zhao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Ma J, Liu TX, Zhang P, Zhang C, Zhang G. Palladium-catalyzed domino spirocyclization of [60]fullerene: synthesis of diverse [60]fullerene-fused spiro[4,5]/[5,5] derivatives. Chem Commun (Camb) 2021; 57:49-52. [PMID: 33244545 DOI: 10.1039/d0cc07143a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein a new, general and practical method for the spirocyclization of [60]fullerene through a palladium-catalyzed domino Heck/C-H activation reaction is presented. A wide range of novel [60]fullerene-fused spirocyclic derivatives can be easily and flexibly synthesized with a broad substrate scope and excellent functional-group tolerance. A plausible mechanism involving an alkyl Pd(ii) species as a key intermediate has been proposed.
Collapse
Affiliation(s)
- Jinliang Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | |
Collapse
|
10
|
Wu C, Liu TX, Zhang P, Zhu X, Zhang G. Iron-Catalyzed Redox-Neutral Radical Cascade Reaction of [60]Fullerene with γ,δ-Unsaturated Oxime Esters: Preparation of Free (N-H) Pyrrolidino[2',3':1,2]fullerenes. Org Lett 2020; 22:7327-7332. [PMID: 32897079 DOI: 10.1021/acs.orglett.0c02658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein an unprecedented iron(II)-catalyzed redox-neutral radical cascade reaction of [60]fullerene with γ,δ-unsaturated oxime esters is reported for the preparation of novel free (N-H) pyrrolidino[2',3':1,2]fullerenes. The transformation undergoes an intramolecular cyclization/intermolecular cyclization/oxidation/hydrolysis cascade, and features simple operation, broad substrate scope/high functional group compatibility as well as suitable for scale-up synthesis, providing a facile and practical access to a range of free pyrrolidino[2',3':1,2]fullerenes.
Collapse
Affiliation(s)
- Conghui Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xue Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Study on the stability effect and mechanism of aniline-fullerene stabilizers on nitrocellulose based on the isothermal thermal decomposition. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Yang Y, Niu C, Chen M, Yang S, Wang GW. Electrochemical regioselective alkylations of a [60]fulleroindoline with bulky alkyl bromides. Org Biomol Chem 2020; 18:4783-4787. [PMID: 32520053 DOI: 10.1039/d0ob00876a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrochemical alkylations of a [60]fulleroindoline with different bulky alkyl bromides exhibit different reaction behaviors. The hydroalkylation and dialkylation of the electrochemically generated dianionic [60]fulleroindoline with bulky 2,4,6-tris(bromomethyl)mesitylene give rise to 1,2,3,16-adducts. In comparison, the hydroalkylation of the dianionic [60]fulleroindoline with bulkier diphenylbromomethane still affords a 1,2,3,16-adduct, while the corresponding dialkylation provides a sterically favoured 1,4,9,12-adduct, which is scarcely investigated, as the major product along with the isomeric 1,2,3,16-adduct as the minor product. The structures of these products have been determined by spectroscopic data and single-crystal X-ray diffraction analysis. A plausible reaction mechanism has been proposed to explain the formation of the observed products.
Collapse
Affiliation(s)
- Yong Yang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Chuang Niu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
13
|
Li G, Jin B, Chai Z, Ding L, Chu S, Peng R. Synthesis and crystal characterization of novel fulleropyrrolidines and their potential application as nitrocellulose-based propellants stabilizer. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Mi Y, Yao J, Ma J, Dai L, Xiao C, Wu W, Yang C. Fulleropillar[4]arene: The Synthesis and Complexation Properties. Org Lett 2020; 22:2118-2123. [PMID: 31976675 DOI: 10.1021/acs.orglett.9b04607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A multihydroquinone ether dialdehyde derivative 2 was incidentally obtained through an unexpected ring opening of pillar[4]arene[1]quinone 1. And the Prato reaction of 2 with [60]fullerene led to [60]fullerene bisadducts, from which trans-4 cyclic regioisomer 3 was isolated and characterized. The fulleropillar[4]arene 3 showed a larger cavity and can accommodate a viologen derivative C12V2+ with a much stronger affinity than permethyl pillar[5]arene (MP5) and pillar[4]arene[1]quinone 1.
Collapse
Affiliation(s)
- Yan Mi
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Jingyu Ma
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Ling Dai
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|