1
|
Verma S, Kumar M, Verma AK. A unified approach to benzo[ c]phenanthridines via the cascade dual-annulation/formylation of 2-alkynyl/alkenylbenzonitriles. Chem Commun (Camb) 2023; 59:3723-3726. [PMID: 36891930 DOI: 10.1039/d3cc00197k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
A base-mediated versatile cascade dual-annulation and formylation of 2-alkenyl/alkynylbenzonitriles with 2-methylbenzonitriles has been established for the construction of four different classes of amino and amido substituted benzo[c]phenanthridines and benzo[c]phenanthrolines. The synthesized molecules could be of utmost relevance in pharmaceuticals. The transformation uses the solvent DMF as the formyl source for synthesis of the amido-substituted scaffolds. This transition-metal-free unique strategy enables the formation of multiple C-C and C-N bonds in one pot at room temperature.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Manoj Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Sengupta S, Pabbaraja S, Mehta G. Domino Reactions through Recursive Anionic Cascades: The Advantageous Use of Nitronates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Goverdhan Mehta
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
3
|
Raji Reddy C, Ganesh V, Punna N. Domino Aza-Annulations of Enynyl-/(Alkynyl)aryl-acetonitriles to Access Nitrogen-Enriched Heterocycles. J Org Chem 2022; 87:11547-11557. [PMID: 35998892 DOI: 10.1021/acs.joc.2c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unprecedented domino aza-annulations of (E)-2-en-4-ynyl-acetonitriles (generated from the Morita-Baylis-Hillman acetates of propiolaldehydes for the first time) with sodium azide under metal- and oxidant-free conditions for the assembly of triazolo-pyridines are accomplished. The developed strategy offers broad substrate scope, extending to (2-alkynyl)aryl and indolyl-acetonitriles to provide the corresponding triazolo-fused isoquinolines and β-carbolines, respectively, in good yields. Additionally, the synthetic utility of the products is demonstrated via denitrogenative coupling of fused triazoles with different nucleophiles.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veeramalla Ganesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Wang Y, Sun Y, Bai W, Zhou Y, Bao X, Li Y. Synthesis, structure and aromaticity of metallapyridinium complexes. Dalton Trans 2022; 51:2876-2882. [PMID: 35099489 DOI: 10.1039/d1dt04096k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first rhena-analogues of pyridinium (cyclopropametalla-2-isoquinolinium complexes) are obtained from o-ethynyl benzonitriles. Structural analysis and DFT calculations confirm their aromatic nature. Compared to rhenapyrylium, rhenapyridinium has a slightly stronger Hückel π-aromaticity, while a chlorine substituent on the rhenapyridinium ring decreases its aromaticity, which is revealed by NICS, EDDB, MCI and ΔBV(ELFπ) analysis.
Collapse
Affiliation(s)
- Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| | - Yue Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, P.R. China
| | - Xiao Bao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R. China
| |
Collapse
|
5
|
Shah C, Yadav P, Althagafi I, Nemaysh V, Shaw R, Elagamy A, Pratap R. Base mediated synthesis of functionalized 2-(alkynyl)arylnitriles and their molecular docking study with aromatase receptor. Org Biomol Chem 2021; 19:3462-3468. [PMID: 33899877 DOI: 10.1039/d1ob00165e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, efficient, and transition metal-free approach to synthesize functionalized 2-(alkynyl)benzonitriles has been developed using suitably functionalized 2H-pyran-2-ones and 4-phenyl/trimethylsilanyl-but-3-yn-2-ones as precursors. The reaction proceeds in the presence of a base at room temperature to yield internal as well as terminal alkynes. The structure of the synthesized compound was confirmed by single-crystal X-ray analysis. The molecular docking study was performed to evaluate the binding mode of action of newly synthesized alkyne derivatives with known human breast cancer target receptor aromatase (PDB ID: 3EQM).
Collapse
Affiliation(s)
- Chandan Shah
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| | - Pratik Yadav
- Department of Chemistry, Kirori Mal College, University of Delhi, North Campus, Delhi, 110007, India
| | - Ismail Althagafi
- Chemistry Department, Faculty of Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Vishal Nemaysh
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| | - Ranjay Shaw
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| | - Amr Elagamy
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| |
Collapse
|
6
|
Kumar A, Mishra PK, Saini KM, Verma AK. Base‐Promoted Synthesis of Polysubstituted 4‐Aminoquinolines from Ynones and 2‐Aminobenzonitriles under Transition‐Metal‐Free Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ankit Kumar
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Pawan K. Mishra
- Department of Chemistry University of Delhi Delhi 110007 India
| | | | | |
Collapse
|
7
|
Belyaeva KV, Nikitina LP, Afonin AV, Grishchenko LA, Trofimov BA. Cyanoquinolines and Furo[3,4- b]quinolinones Formation via On-The-Spot 2,3-Functionalization of Quinolines with Cyanopropargylic Alcohols. J Org Chem 2021; 86:3800-3809. [PMID: 33605731 DOI: 10.1021/acs.joc.0c02644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A convenient approach to 2-(1-ethoxyalkoxy)-3-cyanoquinolines (in up to 50% yields) has been developed. The approach comprises functionalization of quinolines with acetals of cyanopropargylic alcohols (KOH/H2O/MeCN, 55-60 °C) followed by their transformation to furo[3,4-b]quinolinones (in up to 98% yields) via the sequential removal of acetal protection and intramolecular cyclization/hydration (7% aqueous HCl, acetone, 20-25 °C).
Collapse
Affiliation(s)
- Kseniya V Belyaeva
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| | - Lina P Nikitina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| | - Andrey V Afonin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| | - Ludmila A Grishchenko
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| | - Boris A Trofimov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk 664033, Russian Federation
| |
Collapse
|
8
|
Mishra P, Chatterjee S, Verma AK. 2-Alkynylarylnitrile: An Emerging Precursor for the Generation of Carbo- and Heterocycles. ACS OMEGA 2020; 5:32133-32139. [PMID: 33376851 PMCID: PMC7758905 DOI: 10.1021/acsomega.0c04242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
In the pursuit of a coherent synthetic route for the synthesis of carbo- and heterocycles, 2-alkynylarylnitrile has been recognized as a useful and versatile building block in organic synthesis due to the dual capacity of this precursor to act with a nucleophilic of electrophilic nature. The alkynes implanted at the ortho position improved the reactivity of the substrate for tandem cyclization and annulations, which led to the synthesis of diverse and complex cyclic compounds. This mini review summarizes the literature on the synthetic transformations of 2-alkynylarylnitrile into biologically relevant heterocycles as well as carbocycles such as isoindoles, isoquinolines, naphthalenes, and indenones as well as building blocks for the synthesis of various natural products. We hope that this concise review will be a promissory entry for future research in this area.
Collapse
|
9
|
Gore BS, Chiang CH, Lee CC, Shih YL, Wang JJ. De Novo Protocol for the Construction of Benzo[ a]fluorenes via Nitrile/Alkene Activation. Org Lett 2020; 22:7848-7852. [PMID: 33021802 DOI: 10.1021/acs.orglett.0c02739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unprecedented chemo- and regioselective synthesis of benzo[a]fluorenes and naphthamide-substituted benzo[a]fluorenes were constructed from the reaction of (E)-2-aroyl-3-(2-(arylalkynes/alkenes)aryl)acrylonitrile scaffolds under metal-free conditions via the activation of nitriles and alkenes, respectively. A tentative reaction mechanism was proposed for this homofunctionalization of nitriles. Control experiments showed that the reaction proceeds via selective nitrile or alkene protonation, depending upon the substrates. Additionally, we demonstrated an alternative expeditious route for the synthesis of disubstituted benzo[a]fluorenes in the presence of TfOH alone.
Collapse
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan First Road, Sanmin District, Kaohsiung City 807, Taiwan
| | - Chun-Hsien Chiang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan First Road, Sanmin District, Kaohsiung City 807, Taiwan
| | - Chein Chung Lee
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan First Road, Sanmin District, Kaohsiung City 807, Taiwan
| | - Yi-Lun Shih
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan First Road, Sanmin District, Kaohsiung City 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan First Road, Sanmin District, Kaohsiung City 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou First Road, Sanmin District, Kaohsiung City 807, Taiwan
| |
Collapse
|
10
|
Mies T, Ma TK, Barrett AGM. Syntheses of polyfunctional aromatic compounds from non-aromatic precursors. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Zalte RR, Festa AA, Golantsov NE, Subramani K, Rybakov VB, Varlamov AV, Luque R, Voskressensky LG. Aza-Henry and aza-Knoevenagel reactions of nitriles for the synthesis of pyrido[1,2-a]indoles. Chem Commun (Camb) 2020; 56:6527-6530. [DOI: 10.1039/d0cc01652g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
N-(Propargyl)indole-2-carbonitriles undergo DBU-catalyzed addition of CH-acids to nitriles, followed by cyclization to give 9-aminopyrido[1,2-a]indoles.
Collapse
Affiliation(s)
- Rajesh R. Zalte
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Alexey A. Festa
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Nikita E. Golantsov
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Karthikeyan Subramani
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Victor B. Rybakov
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow
- Russia
| | - Alexey V. Varlamov
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Rafael Luque
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| | - Leonid G. Voskressensky
- Organic Chemistry Department
- Science Faculty
- Peoples’ Friendship University of Russia (RUDN University)
- Moscow
- Russia
| |
Collapse
|