1
|
Zhang T, Zhang C, Lu X, Peng C, Zhang Y, Zhu X, Zhong G, Zhang J. Synthesis of silyl indenes by ruthenium-catalyzed aldehyde- and acylsilane-enabled C-H alkylation/cyclization. Org Biomol Chem 2024; 22:466-471. [PMID: 38099332 DOI: 10.1039/d3ob01699d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A ruthenium-catalyzed C-H alkylation/cyclization sequence is presented to prepare silyl indenes with atom and step-economy. This domino reaction is triggered by acyl silane-directed C-H activation, and an aldehyde controlled the following enol cyclization/condensation other than β-H elimination. The protocol tolerates a broad substitution pattern, and the further synthetic elaboration of silyl indenes allows access to a diverse range of interesting indene and indanone derivatives.
Collapse
Affiliation(s)
- Tao Zhang
- School of Engineering, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, Jiangsu, China.
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Cheng Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Xiunan Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Chengxing Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Yawei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| | - Xiong Zhu
- School of Engineering, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, Jiangsu, China.
| | - Guofu Zhong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China.
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121 Zhejiang, China.
| |
Collapse
|
2
|
Noji M, Ishimaru S, Obata H, Kumaki A, Seki T, Hayashi S, Takanami T. Facile electrochemical synthesis of silyl acetals: An air-stable precursor to formylsilane. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Li T, Wu Y, Duan W, Ma Y. Silylative aromatization of p-quinone methides under metal and solvent free conditions. RSC Adv 2021; 11:17860-17864. [PMID: 35480172 PMCID: PMC9033227 DOI: 10.1039/d1ra03193g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022] Open
Abstract
A base-mediated silylation reaction leading to benzyl silanes has been developed. Under transition-metal and solvent free conditions, the silylation of a wide array of p-quinone methides is achieved using a Cs2CO3 catalyst in yields up to 96%. Carboxylation of the as-obtained organosilane with gaseous CO2 provides a new synthetic protocol for the preparation of carboxylic acid. A novel and efficient synthetic protocol is reported for the synthesis of benzyl silanes from readily available silylborane and p-quinone methides using 5% cesium carbonate under solvent-free conditions.![]()
Collapse
Affiliation(s)
- Tingting Li
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| | - Yuzhu Wu
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| | - Wenzeng Duan
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 P. R. China
| | - Yudao Ma
- Department of Chemistry, Shandong University Shanda South Road No. 27 Jinan 250100 P. R. China
| |
Collapse
|
4
|
Feng JJ, Mao W, Zhang L, Oestreich M. Activation of the Si–B interelement bond related to catalysis. Chem Soc Rev 2021; 50:2010-2073. [DOI: 10.1039/d0cs00965b] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Covering the past seven years, this review comprehensively summarises the latest progress in the preparation and application of Si–B reagents, including the discussion of relevant reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Jun Feng
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
- College of Chemistry and Chemical Engineering
| | - Wenbin Mao
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Liangliang Zhang
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Martin Oestreich
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
6
|
Yu W, Liu L, Huang T, Zhou X, Chen T. Palladium-Catalyzed Decarbonylative Heck Coupling of Aromatic Carboxylic Acids with Terminal Alkenes. Org Lett 2020; 22:7123-7128. [DOI: 10.1021/acs.orglett.0c02462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wenqing Yu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Xiangbing Zhou
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Wang X, Liu F, Li Y, Yan Z, Qiang Q, Rong Z. Recent Advances in the Synthesis of Acylsilanes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
- Key Laboratory for Organic Electronics and Information Displays Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 P.R. China
| | - Yongjie Li
- College of Chemistry Liaoning University Shenyang 110036 P.R. China
| | - Zijuan Yan
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Qing Qiang
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| | - Zi‐Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE) Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 P.R. China
| |
Collapse
|
8
|
Lu X, Zhang J, Xu L, Shen W, Yu F, Ding L, Zhong G. Ruthenium-Catalyzed Brook Rearrangement Involved Domino Sequence Enabled by Acylsilane-Aldehyde Corporation. Org Lett 2020; 22:5610-5616. [PMID: 32633529 DOI: 10.1021/acs.orglett.0c01983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A ruthenium-catalyzed [1,2]-Brook rearrangement involved domino sequence is presented to prepare highly functionalized silyloxy indenes with atomic- and step-economy. This domino reaction is triggered by acylsilane-directed C-H activation, and the aldehyde controlled the subsequent enol cyclization/Brook Rearrangement other than β-H elimination. The protocol tolerates a broad substitution pattern, and the further synthetic elaboration of silyloxy indenes allows access to a diverse range of interesting indene and indanone derivatives.
Collapse
Affiliation(s)
- Xiunan Lu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liangyao Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenzhou Shen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Feifei Yu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liyuan Ding
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Cheng LJ, Mankad NP. Cu-Catalyzed Carbonylative Silylation of Alkyl Halides: Efficient Access to Acylsilanes. J Am Chem Soc 2019; 142:80-84. [PMID: 31851513 DOI: 10.1021/jacs.9b12043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Cu-catalyzed carbonylative silylation of unactivated alkyl halides has been developed, enabling efficient synthesis of alkyl-substituted acylsilanes in high yield. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. The practical utility of this method has been demonstrated in the synthesis of acylsilanes bearing different silyl groups as well as in situ reduction of a product to the corresponding α-hydroxylsilane in one pot. Mechanistic experiments indicate that a silylcopper intermediate activates alkyl halides by single electron transfer to form alkyl radical intermediates and that carbon-halogen bond cleavage is not involved in the rate-determining step.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
| | - Neal P Mankad
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607 , United States
| |
Collapse
|