1
|
Reddy CR, Nair K, Srinivasu E, Subbarao M, Grée R. One-Pot Synthesis of N-Fused Benzimidazo-β-carbolines through Sequential Propargylation/ aza-Cycloisomerization Approach. J Org Chem 2024; 89:2675-2682. [PMID: 38319121 DOI: 10.1021/acs.joc.3c02702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The first sequential acid-catalyzed propargylation/base-mediated aza-cycloisomerization between indolyl-benzimidazoles and propargylic alcohols is described. This protocol enables the one-pot construction of N-fused benzimidazo-β-carbolines in good yields. The synthetic utility of this approach is demonstrated by the assembly of an aza-helicene and also by a gram-scale reaction.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karna Nair
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - René Grée
- University of Rennes, Institut des Sciences Chimiques de Rennes (ISCR), CNRS UMR 6226, F-35000 Rennes, France
| |
Collapse
|
2
|
Abonia R, Insuasty D, Laali KK. Recent Advances in the Synthesis of Propargyl Derivatives, and Their Application as Synthetic Intermediates and Building Blocks. Molecules 2023; 28:molecules28083379. [PMID: 37110613 PMCID: PMC10146578 DOI: 10.3390/molecules28083379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The propargyl group is a highly versatile moiety whose introduction into small-molecule building blocks opens up new synthetic pathways for further elaboration. The last decade has witnessed remarkable progress in both the synthesis of propargylation agents and their application in the synthesis and functionalization of more elaborate/complex building blocks and intermediates. The goal of this review is to highlight these exciting advances and to underscore their impact.
Collapse
Affiliation(s)
- Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, Cali A.A. 25360, Colombia
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Barranquilla 081007, Atlántico, Colombia
| | - Kenneth K Laali
- Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| |
Collapse
|
3
|
Romero IE, Lantaño B, Postigo A, Bonesi SM. Photoinduced [6π]-Electrocyclic Reaction of Mono-, Di-, and Trisubstituted Triphenylamines in Acetonitrile. A Steady-State Investigation. J Org Chem 2022; 87:13439-13454. [PMID: 35675160 DOI: 10.1021/acs.joc.2c00756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct irradiation of mono-, di-, and trisubstituted triphenylamine derivatives in acetonitrile as solvent with light of 254 nm has been systematically investigated, revealing that the exo/endo carbazole derivatives were formed as the main photoproducts from modest to good yields for triphenylamines substituted with electron-donor and neutral substituents. The kinetic profiles of the photoreaction were also recorded, and the consumption rate constants (k) were measured. These kinetic parameters show dependence on the nature of the substituents, and linear Hammett correlations were carried out to showcase the substituent effect. On the other hand, the spectroscopic behavior of the electron-rich substituted triphenylamines has been analyzed, suggesting that the fluorescence emission spectra display a mirror image of the lower energy absorption bands, while for those amines bearing electron-acceptor groups the formation of charge-transfer complexes and their fluorescence emissions constitute the main deactivation pathway of the photoreaction.
Collapse
Affiliation(s)
- Ivan E Romero
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, CONICET─Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Beatriz Lantaño
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Al Postigo
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, Buenos Aires CP 1113, Argentina
| | - Sergio M Bonesi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, CONICET─Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
Pramanik S, Chatterjee S, Banerjee R, Chowdhury C. Palladium-Catalyzed Benzannulations of 1-(Indol-2-yl)but-3-yn-1-ols: Easy Access to Functionalized Carbazoles. Org Lett 2022; 24:1895-1900. [DOI: 10.1021/acs.orglett.2c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Subhendu Pramanik
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India
| | - Sarat Chatterjee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India
| | - Rumjhum Banerjee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India
| | - Chinmay Chowdhury
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India
| |
Collapse
|
5
|
Banerjee A, Saha S, Maji MS. Cascade Benzannulation Approach for the Syntheses of Lipocarbazoles, Carbazomycins, and Related Alkaloids. J Org Chem 2022; 87:4343-4359. [PMID: 35253429 DOI: 10.1021/acs.joc.2c00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shuvendu Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
6
|
Liu C, Li H, Wang B, Guo Z, Wang Y, Zhang J, Xie M. Temperature Controlled Di- and Monosulfonylation of Propargyl Alcohols with Sodium Sulfinates: Switchable Access to (E)-Allyl, Vinyldisulfones and Propargyl Sulfones. Org Chem Front 2022. [DOI: 10.1039/d1qo01906f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A switchable di- and monosulfonylation of propargyl alcohols with sodium sulfinates is developed, which successfully affords (E)-allyl, vinyldisulfones and propargyl sulfones in good to excellent yields, respectively. The salient features...
Collapse
|
7
|
Kamble GT, Salem MSH, Abe T, Park H, Sako M, Takizawa S, Sasai H. Chiral Vanadium(V)-catalyzed Oxidative Coupling of 4-Hydroxycarbazoles. CHEM LETT 2021. [DOI: 10.1246/cl.210367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ganesh T. Kamble
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mohamed S. H. Salem
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Tsukasa Abe
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hanseok Park
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Makoto Sako
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
8
|
Faltracco M, Damian M, Ruijter E. Synthesis of Carbazoles and Dihydrocarbazoles by a Divergent Cascade Reaction of Donor-Acceptor Cyclopropanes. Org Lett 2021; 23:7592-7596. [PMID: 34543040 PMCID: PMC8491164 DOI: 10.1021/acs.orglett.1c02795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An alkylation/olefination
cascade of indolecarboxaldehydes and
phosphonate-functionalized donor–acceptor cyclopropanes affords
functionalized dihydrocarbazoles and cyclohepta[cd]indoles in formal (3 + 3) and (4 + 3) cycloadditions. A minor modification
to the reaction conditions also allows access to the fully aromatic
heterocyclic scaffolds by thermal loss of an electron-rich aryl moiety.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Matteo Damian
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Raji Reddy C, Aila M, Subbarao M, Warudikar K, Grée R. Domino Reaction of 2,4-Diyn-1-ols with 1,3-Dicarbonyl Compounds: Direct Access to Aryl/Heteroaryl-Fused Benzofurans and Indoles. Org Lett 2021; 23:4882-4887. [PMID: 34096313 DOI: 10.1021/acs.orglett.1c01615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A domino propargylation/furanylation (intramolecular exo-dig-cyclization)/benzannulation reaction of 2,4-diyn-1-ols with 1,3-dicarbonyl compounds has been developed for the first time. This provides a novel and effective method for the preparation of aryl/heteroaryl-fused benzofurans from easily accessible starting materials in a single step. The methodology was extended to pyrrolyl-benzannulation to obtain aryl/heteroaryl-fused indoles. Further, application of this approach in the synthesis of eustifoline D and dictyodendrin structural frameworks has been demonstrated.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mounika Aila
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kamalkishor Warudikar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - René Grée
- Univ Rennes, CNRS (Institut for Chemical Sciences in Rennes), UMR 6226, 35000 Rennes, France
| |
Collapse
|
10
|
Faltracco M, Ortega-Rosales S, Janssen E, Cioc RC, Vande Velde CML, Ruijter E. Synthesis of Carbazoles by a Diverted Bischler-Napieralski Cascade Reaction. Org Lett 2021; 23:3100-3104. [PMID: 33787266 PMCID: PMC8056386 DOI: 10.1021/acs.orglett.1c00785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
An unforeseen twist
in a seemingly trivial Bischler–Napieralski
reaction led to the selective formation of an unexpected carbazole
product. The reaction proved to be general, providing access to a
range of diversely substituted carbazoles from readily available substrates.
Judicious variation of substituents revealed a complex cascade mechanism
comprising no less than 10 elementary steps, that could be diverted
in multiple ways toward various other carbazole derivatives.
Collapse
Affiliation(s)
- Matteo Faltracco
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Said Ortega-Rosales
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Elwin Janssen
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Răzvan C Cioc
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Christophe M L Vande Velde
- Faculty of Applied Engineering, iPRACS, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecular & Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Chada RR, Kajare RC, Bhandari MC, Mohammed SZ, Khatravath M, Warudikar K, Punna N. Facile access to [1,2]-oxazine derivatives via annulations of aminoxy-tethered 1,7-enynes. Org Biomol Chem 2021; 19:809-821. [PMID: 33403372 DOI: 10.1039/d0ob02279a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach for the highly diastereoselective construction of functionalized cyclopenta[d][1,2]oxazines via sequential oxyamination and Pauson-Khand reaction of readily accessible propargylic alcohols has been developed. Furthermore, the ring closing metathesis of these N-O linked 1,7-enynes afforded vinylated-[1,2]oxazines in good yields. The reduction of the N-O bond of the obtained cyclopenta[d][1,2]oxazine is accomplished to access cyclopentenone-based amino alcohols.
Collapse
Affiliation(s)
- Raji Reddy Chada
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Roshan Chandrakant Kajare
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mayur C Bhandari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Siddique Z Mohammed
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mahender Khatravath
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Kamalkishor Warudikar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
12
|
Reddy CR, Srinivasu E, Sathish P, Subbarao M, Donthiri RR. One-Pot Arylative Benzannulation of 2-Carbonyl-3-propargyl Indoles with Boronic Acids Leading to Arylated Carbazoles. J Org Chem 2021; 86:1118-1132. [PMID: 33322899 DOI: 10.1021/acs.joc.0c02601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arylative annulation of 2-carbonyl-3-propargyl indoles with boronic acids under sequential palladium/triflic acid catalysis is described. The present strategy to provide di- and triaryl carbazoles in one pot involves benzannulation through difunctionalization of alkynes. The strategy showed a good substrate scope with respect to boronic acids as well as 2-carbonyl-3-propargyl indoles to afford the corresponding carbazoles in decent yields.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puppala Sathish
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramachandra Reddy Donthiri
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| |
Collapse
|
13
|
Banerjee A, Kundu S, Bhattacharyya A, Sahu S, Maji MS. Benzannulation strategies for the synthesis of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines. Org Chem Front 2021. [DOI: 10.1039/d1qo00092f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents a critical and authoritative analysis of several exciting benzannulation approaches developed in the past decade for the construction of carbazoles, indolocarbazoles, benzocarbazoles, and carbolines.
Collapse
Affiliation(s)
- Ankush Banerjee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Kundu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Arya Bhattacharyya
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Samrat Sahu
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Modhu Sudan Maji
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|
14
|
Dinda E, Bhunia SK, Jana R. Palladium-Catalyzed Cascade Reactions for Annulative π -Extension of Indoles to Carbazoles through C–H Bond Activation. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200817170058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The annulative π-extension (APEX) reactions through C-H bond activation has
tremendous potential to access fused aromatic systems from relatively simple aromatic
compounds in a single step. This state-of-the-art technique has the ability to streamline the
synthesis of functionalized materials useful in material science, biomedical research, agroand
pharmaceutical industries. Furthermore, C-H activation strategy does not require prefunctionalization
steps, which allows for the late-stage modification of the functional
molecule with requisite molecular properties. Owing to their unique photophysical properties,
carbazoles are widely used in photovoltaic cells, biomedical imaging, fluorescent
polymer, etc. It is also ubiquitously found in many natural products, agrochemicals and
privileged medicinal scaffolds. Hence, direct conversion of easily accessible indole to carbazole
remains an active research area. In the last decades, significant advancement has
been made to access carbazole moiety directly from indole through cascade C-H activation. The underlying
mechanism behind this cascade π-extension strategy is the facile electrophilic metalation at the C-3 position of
the indole moiety, 1,2- migration and electro cyclization. In this review, we will discuss recent literature reports
for the palladium-catalyzed π-extension of indole to carbazole moiety through C-H bond activation.
Collapse
Affiliation(s)
- Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| | - Samir Kumar Bhunia
- Department of Chemistry, Midnapore College (autonomous), Paschim Medinipur, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIRIndian Institute of Chemical Biology, 4 Raja S C Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
15
|
Shang L, Feng Y, Gao X, Chen Z, Xia Y, Jin W, Liu C. DMAP‐Catalyzed
C—N Bond Formation for Diverse Synthesis of Imidazo[1,2‐
a
]pyrimidine and Pyrimido[1,2‐
a
]benzimidazole Derivatives. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Le‐Le Shang
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Yun Feng
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Xing‐Lian Gao
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Zi‐Ren Chen
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Yu Xia
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Wei‐Wei Jin
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Chen‐Jiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| |
Collapse
|
16
|
Affiliation(s)
- José M. Alonso
- Departamento de Química Orgánica Universidad Complutense de Madrid Avda. Complutense s/n 28040 Madrid Spain
| | - María Paz Muñoz
- School of Chemistry University of East Anglia Earlham Road 4 7TJ Norwich, NR UK
| |
Collapse
|
17
|
Yang X, Zheng B, Wang Y, Li Y, Liu Q, Pan L. Cs
+
/Alcohol Promoted[4C+2C]Annulation: ASynthetic Strategy for Polysubstituted Phenols. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaohui Yang
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Baihui Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yanqing Wang
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
18
|
Liu X, Liu Y, Chen L. Tandem Annulations of Propargylic Alcohols to Indole Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000930] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Yan Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road Guangzhou 510006 People's Republic of China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University 168 Hua Guan Road Chengdu 610052 People's Republic of China
| |
Collapse
|
19
|
Zheng L, Hua R. Recent Advances in Construction of Polycyclic Natural Product Scaffolds via One-Pot Reactions Involving Alkyne Annulation. Front Chem 2020; 8:580355. [PMID: 33195069 PMCID: PMC7596902 DOI: 10.3389/fchem.2020.580355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Polycyclic scaffolds are omnipresent in natural products and drugs, and the synthetic strategies and methods toward construction of these scaffolds are of particular importance. Compared to simple cyclic ring systems, polycyclic scaffolds have higher structure complexity and diversity, making them suitable for charting broader chemical space, yet bringing challenges for the syntheses. In this review, we surveyed progress in the past decade on synthetic methods for polycyclic natural product scaffolds, in which the key steps are one-pot reactions involving intermolecular or intramolecular alkyne annulation. Synthetic strategies of selected polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro rings are discussed with emphasis on the synthetic efficiency and product diversity. Recent examples containing newly developed synthetic concepts or toolkits such as collective and divergent total synthesis, gold catalysis, C–H functionalization, and dearomative cyclization are highlighted. Finally, several “privileged synthetic strategies” for “privileged polycyclic scaffolds” are summarized, with discussion of remained challenges and future perspectives.
Collapse
Affiliation(s)
- Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Wu L, Yu B, Li E. Recent Advances in Organocatalyst‐Mediated Benzannulation Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000608] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lulu Wu
- School of Science Henan Agricultural University Zhengzhou 450002 People's Republic of China
| | - Bing Yu
- College of Chemistry Green Catalysis Center Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Er‐Qing Li
- College of Chemistry Green Catalysis Center Zhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|
21
|
Reddy CR, Kolgave DH, Subbarao M, Aila M, Prajapti SK. Ag-Catalyzed Oxidative ipso-Cyclization via Decarboxylative Acylation/Alkylation: Access to 3-Acyl/Alkyl-spiro[4.5]trienones. Org Lett 2020; 22:5342-5346. [DOI: 10.1021/acs.orglett.0c01588] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H. Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mounika Aila
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Santosh Kumar Prajapti
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|