1
|
Renner J, Smith SR, Cowley JM, Louie J. Improved Total Synthesis of Indolizidine and Quinolizidine Alkaloids via Nickel-Catalyzed (4 + 2) Cycloaddition. J Org Chem 2022; 87:8871-8883. [PMID: 35759553 DOI: 10.1021/acs.joc.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Ni-catalyzed (4 + 2) cycloaddition of bicyclic 3-azetidinones and alkynes was developed to access indolizidine and quinolizidine alkaloids. A key element was the development of a diazomethylation procedure that allows the efficient synthesis of bicyclic azetidinones from pyroglutamic and 6-oxopiperidine-2-carboxylic acid. A ligand screening led to improved regioselectivity and enantiopurity during the Ni-catalyzed (4 + 2) cycloaddition. This straightforward methodology was leveraged to synthesize (+)-ipalbidine, (+)-septicine, (+)-seco-antofine, and (+)-7-methoxy-julandine.
Collapse
Affiliation(s)
- Jonas Renner
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Sleight R Smith
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Jacob M Cowley
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| | - Janis Louie
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-8450, United States
| |
Collapse
|
2
|
Kuntiyong P, Inprung N, Attanonchai S, Kheakwanwong W, Bunrod P, Akkarasamiyo S. Diastereoselective Synthesis of Tetrahydrofurano[2,3-g]indolizidine and 8-Aminoindolizidines from L-Asparagine. Synlett 2022. [DOI: 10.1055/a-1806-6089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
8-Aminoindolizidines were synthesized from L-asparagine as the chiral starting material. The key dibenzylamino succinimide intermediate was synthesized in two steps. Three homologs of chiral hydroxylactams tethered with hydroxyalkene were synthesized from the succinimide via a sequence involving N-alkylation, cross olefin metathesis and hydride reduction. The dibenzylamino group gave the stereocontrol of the key N-acyliminium ion cyclization of these hydroxylactams. 5-Substituted-aminoindolizidines were synthesized with high diastereoselectivity at C6. A tandem cyclization of N-(6-hydroxyhex-3-en-1-yl)-g-hydroxylactam resulted in formation of tetrahydrofurano[2,3-g]indolizidine system.
Collapse
Affiliation(s)
- Punlop Kuntiyong
- Chemistry, Silpakorn University Faculty of Science, Muang Nakhon Pathom, Thailand
| | - Nantachai Inprung
- Chemistry, Silpakorn University Faculty of Science, Muang Nakhon Pathom, Thailand
| | | | - Wichita Kheakwanwong
- Chemistry, Silpakorn University Faculty of Science, Muang Nakhon Pathom, Thailand
| | - Pijitra Bunrod
- Chemistry, Silpakorn University Faculty of Science, Muang Nakhon Pathom, Thailand
| | - Sunisa Akkarasamiyo
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Yamasaki N, Iwasaki I, Sakumi K, Hokari R, Ishiyama A, Iwatsuki M, Nakahara M, Higashibayashi S, Sugai T, Imagawa H, Kubo M, Fukuyama Y, Ōmura S, Yamamoto H. A Concise Total Synthesis of Dehydroantofine and Its Antimalarial Activity against Chloroquine-Resistant Plasmodium falciparum. Chemistry 2021; 27:5555-5563. [PMID: 33482050 DOI: 10.1002/chem.202100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/31/2022]
Abstract
The total synthesis of dehydroantofine was achieved by employing a novel, regioselective, azahetero Diels-Alder reaction of easily accessible 3,5-dichloro-2H-1,4-oxazin-2-one with 14 a as a key step. Furthermore, it is demonstrated that dehydroantofine is a promising candidate as a new antimalarial agent in a biological assay with chloroquine-resistant Plasmodium falciparum.
Collapse
Affiliation(s)
- Naoto Yamasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Ikumi Iwasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Kazu Sakumi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Rei Hokari
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Aki Ishiyama
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Masataka Nakahara
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Shuhei Higashibayashi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Takeshi Sugai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 1058512, Japan
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute and Graduate School of Infection, Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 1088641, Japan
| | - Hirofumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 7708514, Japan
| |
Collapse
|
4
|
Zhang J, Morris-Natschke SL, Ma D, Shang XF, Yang CJ, Liu YQ, Lee KH. Biologically active indolizidine alkaloids. Med Res Rev 2020; 41:928-960. [PMID: 33128409 DOI: 10.1002/med.21747] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Indolizidine alkaloids are chemical constituents isolated from various marine and terrestrial plants and animals, including but not limited to trees, fungi, ants, and frogs, with a myriad of important biological activities. In this review, we discuss the biological activity and pharmacological effects of indolizidine alkaloids and offer new avenues toward the discovery of new and better drugs based on these naturally occurring compounds.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Reddy MVK, Anusha G, Reddy PVG. Sterically enriched bulky 1,3-bis(N,N′-aralkyl)benzimidazolium based Pd-PEPPSI complexes for Buchwald–Hartwig amination reactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj01294g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple and efficient synthesis of a series of unexisting Pd-PEPPSI complexes is summarized. These complexes are exploited for their high catalytic activity towards Buchwald–Hartwig amination.
Collapse
|