1
|
Ghosh R, Pathan S, Jayakannan M. Structural Engineering of Cationic Block Copolymer Architectures for Selective Breaching of Prokaryotic and Eukaryotic Biological Species. ACS APPLIED BIO MATERIALS 2024. [PMID: 39422071 DOI: 10.1021/acsabm.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Positively charged antimicrobial polymers are known to cause severe damage to biological systems, and thus synthetic strategies are urgently required to design next-generation nontoxic cationic macromolecular architectures for healthcare applications. Here, we report a structural-engineering strategy to build cationic linear and star-block copolymer nanoarchitectures having identical chemical composition, molar mass, nanoparticle size, and positive surface charge, yet they differ distinctly in their biological action in breaching prokaryotic species such as E. coli (Gram-negative bacteria) without affecting eukaryotic species like red-blood and mammalian cells. For this purpose, linear and star-block structures are built on a polycaprolactone biodegradable platform having an imidazolium positive handle. Under physiological conditions, the linear architecture exhibits toxicity indiscriminately to all biological species, whereas its star counterpart is remarkably selective in membrane breaching action toward bacteria while maintaining inertness toward eukaryotic species. Confocal microscopy analysis of HPTS fluorescent dye-loaded star-polymer nanoparticles substantiated their antimicrobial action in E. coli. Tissue-penetrable near-infrared fluorescent dye (IR-780) loaded NP aided the in vivo biodistribution analysis and ex vivo quantification of cationic species' accumulations in vital organs in mice. Azithromycin, a clinical water-insoluble macrolide, is delivered from the star platform to accomplish synergistic antimicrobial activity by the combination of bactericidal-bacteriostatic action of the polymer carrier and drug together in a single system.
Collapse
Affiliation(s)
- Ruma Ghosh
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Su X, Jing X, Jiang W, Li M, Liu K, Teng M, Wang D, Meng L, Zhang Y, Ji W. Curcumin-Containing Polyphosphazene Nanodrug for Anti-Inflammation and Nerve Regeneration to Improve Functional Recovery After Spinal Cord Injury. Int J Pharm 2023:123197. [PMID: 37406950 DOI: 10.1016/j.ijpharm.2023.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
The microenvironment of excessive inflammation and the activation of apoptotic signals are primary barriers to neurological recovery following spinal cord injury (SCI). Thus, long-lasting anti-inflammation has become an effective strategy to navigate SCI. Herein, a curcumin (CUR)-containing nanosystem (FCTHPC) with high drug loading efficiency was reported via assembling hydrophobic CUR into cross-linked polyphosphazene (PPZ), and simultaneous loading and coordinating with porous bimetallic polymers for greatly enhanced the water-solubility and biocompatibility of CUR. The nanosystem is noncytotoxic when directing its biological activities. By inhibiting the expression of pro-inflammatory factors (IL-1β, TNF-α and IL-6) and apoptotic proteins (C-caspase-3 and Bax/Bcl-2), which may be accomplished by activating the Wnt/β-catenin pathway, the versatile FCTHPC can significantly alleviate the damage to tissues and cells caused by inflammation and apoptosis in the early stage of SCI. In addition, the long-term in vivo studies had demonstrated that FCTHPC could effectively inhibit the formation of glial scars, and simultaneously promote nerve regeneration and myelination, leading to significant recovery of spinal cord function. This study emphasises the promise of the biocompatible CUR-based nanosystem and provides a fresh approach to effectively treat SCI.
Collapse
Affiliation(s)
- Xiaochen Su
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Xunan Jing
- Department of Talent Highland, Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Wanting Jiang
- Department of Ultrasound Diagnosis, The Fourth Hospital of Xi'an, Xi'an People's Hospital, Xi'an, 710004, P. R. China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Kai Liu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Menghao Teng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China; School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China; Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| |
Collapse
|
3
|
Tong L, Zhou Z, Wang G, Wu C. A self-microemulsion enhances oral absorption of docetaxel by inhibiting P-glycoprotein and CYP metabolism. Drug Deliv Transl Res 2023; 13:983-993. [PMID: 36515864 DOI: 10.1007/s13346-022-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 12/15/2022]
Abstract
Oral absorption of docetaxel was limited by drug efflux pump p-glycoprotein (P-gp) and cytochrome P450 enzyme (CYP 450). Therefore, co-loading agent that inhibits P-gp and CYP450 in self-nanoemulsifying drug delivery systems (SMEs) is considered a promising strategy for oral delivery of docetaxel. In this study, curcumin was selected as an inhibitor of P-gp and CYP450, and it was co-encapsuled in SMEs to improve the oral bioavailability of docetaxel. SMEs quickly dispersed in water within 20 s, and the droplet size was 32.23 ± 2.21 nm. The release rate of curcumin from DC-SMEs was higher than that of docetaxel in vitro. Compared with free docetaxel, SMEs significantly increased the permeability of docetaxel by 4.6 times. And competitive experiments showed that the increased permeability was the result of inhibition of p-gp. The half-life and oral bioavailabilty of DC-SMEs increased about 1.7 times and 1.6 times than docetaxel SMEs, which indicated that its good pharmacokinetic behavior was related to the restriction of hepatic first-pass metabolism. In conclusion, DC-SME was an ideal platform to facilitate oral delivery of docetaxel through inhibited P-gp and CYP 450.
Collapse
Affiliation(s)
- Le Tong
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China
| | - ZeYang Zhou
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Wuhe Road, Nanning, 530200, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
4
|
Jin GW, Rejinold NS, Choy JH. Polyphosphazene-Based Biomaterials for Biomedical Applications. Int J Mol Sci 2022; 23:15993. [PMID: 36555633 PMCID: PMC9781794 DOI: 10.3390/ijms232415993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, synthetic polymers have attracted great interest in the field of biomedical science. Among these, polyphosphazenes (PPZs) are regarded as one of the most promising materials, due to their structural flexibility and biodegradability compared to other materials. PPZs have been developed through numerous studies. In particular, multi-functionalized PPZs have been proven to be potential biomaterials in various forms, such as nanoparticles (NPs) and hydrogels, through the introduction of various functional groups. Thus, PPZs have been applied for the delivery of therapeutic molecules (low molecular weight drugs, genes and proteins), bioimaging, phototherapy, bone regeneration, dental liners, modifiers and medical devices. The main goal of the present review is to highlight the recent and the most notable existing PPZ-based biomaterials for aforementioned applications, with future perspectives in mind.
Collapse
Affiliation(s)
- Geun-Woo Jin
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- R&D Center, CnPharm Co., Ltd., Seoul 03759, Republic of Korea
| | - N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- International Research Frontier Initiative (IRFI), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
5
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
6
|
Construction of Tourism E-Commerce Platform Based on Artificial Intelligence Algorithm. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5558011. [PMID: 35720893 PMCID: PMC9205698 DOI: 10.1155/2022/5558011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
In the late twentieth century, with the rapid development of the Internet, e-commerce has emerged rapidly, which has changed the way people travel around the world. The greatest advantages of e-commerce are the flow of information and data and the importance of traveling freely to experience the mind and body in different fields. Tourism is an important part of the development of e-commerce, but the development of e-commerce tourism lags behind. To solve the current situation of the backward development of tourism e-commerce, this article studies the construction of a tourism e-commerce platform based on an artificial intelligence algorithm. By introducing modern information technology, based on a cloud computing platform, big data analysis, K-means, and other key technologies, this article solves the current situation of the development of an e-commerce platform. It also analyzes the construction methods of traditional cloud platforms and modern cloud platforms through comparative analysis and solves the construction methods suitable for artificial intelligence tourism. At the same time, combined with the actual situation of tourism, this article selects the appropriate networking method based on the analysis of the advantages and disadvantages of wired and wireless coverage methods and economics to complete the project design. Its purpose is to ensure that the work meets the specific construction needs and build an artificial intelligence-based smart tourism big data analysis model. It promotes the development of tourism e-commerce industry. It saves costs and improves efficiency for travel service providers. Then, according to the actual situation of tourism, it conducts demand analysis from the perspectives of tourists, scenic spots, service providers, tourism administrative agencies, etc. Experiments show that, through the practical application of the artificial intelligence tourism mobile e-commerce platform in this article, it can be seen that the artificial intelligence tourism mobile e-commerce platform designed in this article can meet the needs of customers for shopping-related tourism commodities. Tourists of attractions have increased by 3.54%, and the economy of tourist destinations has increased by 4.2%.
Collapse
|
7
|
Yang Y, Hu D, Lu Y, Chu B, He X, Chen Y, Xiao Y, Yang C, Zhou K, Yuan L, Qian Z. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B 2022; 12:2710-2730. [PMID: 35755283 PMCID: PMC9214336 DOI: 10.1016/j.apsb.2021.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer has become the most commonly diagnosed cancer type in the world. A combination of chemotherapy and photothermal therapy (PTT) has emerged as a promising strategy for breast cancer therapy. However, the intricacy of precise delivery and the ability to initiate drug release in specific tumor sites remains a challenging puzzle. Therefore, to ensure that the therapeutic agents are synchronously delivered to the tumor site for their synergistic effect, a multifunctional nanoparticle system (PCRHNs) is developed, which is grafted onto the prussian blue nanoparticles (PB NPs) by reduction-responsive camptothecin (CPT) prodrug copolymer, and then modified with tumor-targeting peptide cyclo(Asp-d-Phe-Lys-Arg-Gly) (cRGD) and hyaluronic acid (HA). PCRHNs exhibited nano-sized structure with good monodispersity, high load efficiency of CPT, triggered CPT release in response to reduction environment, and excellent photothermal conversion under laser irradiation. Furthermore, PCRHNs can act as a photoacoustic imaging contrast agent-guided PTT. In vivo studies indicate that PCRHNs exhibited excellent biocompatibility, prolonged blood circulation, enhanced tumor accumulation, allow tumor-specific chemo-photothermal therapy to achieve synergistic antitumor effects with reduced systemic toxicity. Moreover, hyperthermia-induced upregulation of heat shock protein 70 in the tumor cells could be inhibited by CPT. Collectively, PCRHNs may be a promising therapeutic way for breast cancer therapy.
Collapse
|
8
|
Li H, Li F, Sun Y, Li Y. A feasible strategy of fabricating hybrid drugs encapsulated polymeric nanoparticles for the treatment of gastric cancer therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Örüm SM. Novel cyclomatrix polyphosphazene nanospheres: preparation, characterization and dual anticancer drug release application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Chao S, Lv X, Ma N, Shen Z, Zhang F, Pei Y, Pei Z. A supramolecular nanoprodrug based on a boronate ester linked curcumin complexing with water-soluble pillar[5]arene for synergistic chemotherapies. Chem Commun (Camb) 2021; 56:8861-8864. [PMID: 32638757 DOI: 10.1039/d0cc04315j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A supramolecular nanoprodrug based on the host-guest complexation of water-soluble pillar[5]arene (WP5) and a boronate ester linked curcumin (Cur) was constructed, which had dual-responsiveness towards pH and GSH, allowing the drug to be selectively released in hepatoma cells. In vitro studies revealed that the Dox-loaded WP5G-Cur nanoprodrug achieved co-delivery of Dox/Cur. The anti-cancer efficiency could be enhanced through synergistic chemotherapies of Dox/Cur.
Collapse
Affiliation(s)
- Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Xiukai Lv
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ning Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Feiyu Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
11
|
Zhang H, Wu Y, Xu X, Chen C, Xue X, Xu B, Li T, Chen Z. Synthesis Characterization of Platinum (IV) Complex Curcumin Backboned Polyprodrugs: In Vitro Drug Release Anticancer Activity. Polymers (Basel) 2020; 13:E67. [PMID: 33375302 PMCID: PMC7795977 DOI: 10.3390/polym13010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The conventional mono-chemotherapy still suffers from unsatisfied potency for cancer therapy due to tumor heterogeneity and the occurrence of drug resistance. Combination chemotherapy based on the nanosized drug delivery systems (nDDSs) has been developed as a promising platform to circumvent the limitations of mono-chemotherapy. In this work, starting from cisplatin and curcumin (Cur), we prepared a dual drug backboned shattering polymeric nDDS for synergistic chemotherapy. By in situ polymerization of the Cur, platinum (IV) complex-based prodrug monomer (DHP), L-lysine diisocyanate (LDI), and then conjugation with a hydrophilic poly (ethylene glycol) monomethyl ether (mPEG) derivative, a backbone-type platinum (IV) and Cur linkage containing mPEG-poly(platinum-co-Cur)-mPEG (PCPt) copolymer was synthesized. Notably, the platinum (IV) (Pt (IV)) and Cur were incorporated into the hydrophobic segment of PCPt with the fixed drugs loading ratio and high drugs loading content. The batch-to-batch variability could be decreased. The resulting prodrug copolymer then self-assembled into nanoparticles (PCPt NPs) with an average diameter around 100 nm, to formulate a synergetic nDDS. Importantly, PCPt NPs could greatly improve the solubility and stability of Cur. In vitro drug release profiles have demonstrated that PCPt NPs were stable in PBS 7.4, rapid burst release was greatly decreased, and the Pt and Cur release could be largely enhanced under reductive conditions due to the complete dissociation of the hydrophobic main chain of PCPt. In vitro cell viability test indicated that PCPt NPs were efficient synergistic chemotherapy units. Moreover, PCPt NPs were synergistic for cisplatin-resistant cell lines A549/DDP cells, and they exhibited excellent reversal ability of tumor resistance to cisplatin. This work provides a promising strategy for the design and synthesis of nDDS for combination chemotherapy.
Collapse
Affiliation(s)
- Honglei Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.Z.); (X.X.); (B.X.); (T.L.)
| | - Yanjuan Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.Z.); (X.X.); (B.X.); (T.L.)
| | - Xiao Xu
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (X.X.); (C.C.)
| | - Chen Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (X.X.); (C.C.)
| | - Xiukun Xue
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.Z.); (X.X.); (B.X.); (T.L.)
| | - Ben Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.Z.); (X.X.); (B.X.); (T.L.)
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.Z.); (X.X.); (B.X.); (T.L.)
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (X.X.); (C.C.)
| |
Collapse
|
12
|
Zhou Z. Co-drug delivery of regorafenib and cisplatin with amphiphilic copolymer nanoparticles: enhanced in vivo antitumor cancer therapy in nursing care. Drug Deliv 2020; 27:1319-1328. [PMID: 32936009 PMCID: PMC7534345 DOI: 10.1080/10717544.2020.1815897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Cancers continue to be the second leading cause of death worldwide. Despite the development and improvement of surgery, chemotherapy and radiotherapy in cancer management, effective tumor ablation strategies are still in need due to high cancer patient mortality. Hence, we have established a new approach to achieve treatment-actuated modifications in a tumor microenvironment by using synergistic activity between two potential anticancer drugs. Dual drug delivery of Regorafenib (REGO) and Cisplatin (PT) exhibits a great anticancer potential, as REGO enhances the effect of PT treatment of human cells by providing stability of the microenvironment. However, encapsulation of REGO and PT fanatical by methoxypoly(ethylene glycol)-block-poly(D, L-lactic acid) (PEG-PLA in termed as NPs) is incompetent owing to unsuitability between the binary Free REGO and PT core and the polymeric system. Now, we display that PT can be prepared by hydrophobic coating of the dual drug centers with dioleoylphosphatidic acid (DOPA). The DOPA-covered PT can be co-encapsulated in PLGA NPs alongside REGO to stimulate excellent anticancer property. The occurrence of the PT suggestively enhanced the encapsulations of REGO into PLGA NPs (REGO-PT NPs). Further, the morphology of REGO NPs, PT NPs, and REGO-PT NPs and nanoparticle size was examined by transmission microscopy (TEM), respectively. Furthermore REGO-PT NPs induced significant apoptosis in human lung A549 and ovarian A2780 cancer cells by in vitro. The morphological observation and apoptosis were confirmed by the various biochemical assayes (AO-EB, Nuclear Staining and Annexin V-FITC). In a xenograft model of lung cancer, this nanotherapy shows a durable inhibition of tumor progression upon the administration of a tolerable dose. Our results suggest that a hydrophobic and highly toxic drug can be rationally converted into a pharmacologically efficient and self-deliverable nursing care of nanotherapy. Highlights Dual drug delivery of Regorafenib (REGO) and Cisplatin (PT) exhibits a great anticancer potential, as REGO enhances the effect of PT treatment of human cells by providing stability of the microenvironment. REGO-PT NPs induced significant apoptosis in human lung A549 and ovarian A2780 cancer cells by in vitro. The morphological observation and apoptosis were confirmed by the various biochemical assayes. In a xenograft model of lung cancer, this nanotherapy shows a durable inhibition of tumor progression upon the administration of a tolerable dose.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Oncology, Huaihe Hospital of Henan
University, Kaifeng, China
| |
Collapse
|
13
|
Li X, Gao Y. Synergistically fabricated polymeric nanoparticles featuring dual drug delivery system to enhance the nursing care of cervical cancer. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|